BME610 Shamik Sen

download BME610 Shamik Sen

of 58

Transcript of BME610 Shamik Sen

  • 7/31/2019 BME610 Shamik Sen

    1/58

    BME 610

    Experimental & Quantitative Physiology

    Prof. Shamik Sen

    Contact Information:

    Email: [email protected]

    Office: 203, Civil Engg. Bldg.

    Atomic Force Microscopy

    mailto:[email protected]:[email protected]
  • 7/31/2019 BME610 Shamik Sen

    2/58

  • 7/31/2019 BME610 Shamik Sen

    3/58

  • 7/31/2019 BME610 Shamik Sen

    4/58

  • 7/31/2019 BME610 Shamik Sen

    5/58

    Extracellular Matrix (ECM)

    Provides structural support to maintain tissue architecture (collagen, elastin)Provides mechanical strength to tissues (elastin)Acts as a reservoir of water molecules (proteoglycans)Supports cell adhesion (fibronectin, collagen, laminin)

    Sequesters various chemical signals relevant to cell behavior

  • 7/31/2019 BME610 Shamik Sen

    6/58

    Mechanical Properties of Cells

    Stiffness /Youngs Modulus (E)

    1 kPa 10 kPa 100 kPafluid

    Brain MuscleBlood Collagenous Bone

  • 7/31/2019 BME610 Shamik Sen

    7/58

    Mechanical Properties of Cells

    Plasma Membrane

    0.01- 0.1 mN/mfor most cellsTo

    Membrane Tension (T0)

    Contractility/Pre-stress (s)

    Adhesion Strength/Adhesiveness

  • 7/31/2019 BME610 Shamik Sen

    8/58

    Cell mechanical properties are altered in development & disease

    Cell functioning is intimately tied to its physical properties

    Cellular propertiesare dynamic in nature

    Cellular propertiesevolve duringdevelopment

    Alterations in cellphysical propertiesunderlie various diseases

  • 7/31/2019 BME610 Shamik Sen

    9/58

    Biophysical techniques for probingcells & sub-cellular organelles

    Apply Force to biological samples

    Measure or record deformation of/in cell(s) cellular or sub-cellular level

    Determine topography and/or physical propertyof cell(s) and/or sub-cellular compartments

    Mechanical

    Magnetic

    Electrical

    Optical

    Force

  • 7/31/2019 BME610 Shamik Sen

    10/58

    Atomic Force Microscope (AFM)

    Invented in 1986 by Binnig & Rohrer at IBM, Zurich; commercialized in 1989

    Offshoot of Scanning Tunneling Microscope (STM)

    Can image non-conducting samples

    Can image live samples; no requirement for fixing

    Can be used for imaging as well as force measurements

  • 7/31/2019 BME610 Shamik Sen

    11/58

  • 7/31/2019 BME610 Shamik Sen

    12/58

    Comparison of biophysical tools

  • 7/31/2019 BME610 Shamik Sen

    13/58

    A Typical AFM setup

    Controller

    Visualization Software

    Inverted Microscope

    AFM Head

  • 7/31/2019 BME610 Shamik Sen

    14/58

    a sharp tip mounted on a flexiblecantilever that acts as a spring

    a laser diode, whose light isfocused on the very end of thecantilever beam

    a position-sensitive photodiode

    that detects the laser beamreflected by the cantilever

    a piezo device for positioning thesample relative to the tip

    Principal Components of an AFM

  • 7/31/2019 BME610 Shamik Sen

    15/58

    Cantilever & Tip Parameters

  • 7/31/2019 BME610 Shamik Sen

    16/58

    Cantilever & Tip Parameters

    Length (100-300 mm)

    Width (10-50 mm)

    Thickness (0.5 10 mm)

    Shape (Rectangular, Straight, etc)

    Material (Si, SiN)

    Reflective coating (Al, Au)

    Spring Constant (0.01-100 N/m)

    Resonance Frequency (50-200 kHz)

    Tip Radius (10-50 nm)

    Tip Height (0-50 mm)

    Tip Angle (15-infinity )

    Tip Shape (3-sided, 4-sided)

    Tip Material (Si, SiN, etc)

  • 7/31/2019 BME610 Shamik Sen

    17/58

    Mode of Operation: Contact (DC) Mode

    Tip & sample are in contact

    Tip raster scans the surface

    Sharp tip is used for contact mode

    Deflection set point is specified

    Used for very flat & rigid surfaces

  • 7/31/2019 BME610 Shamik Sen

    18/58

    Mode of Operation: Tapping (AC) Mode

    Tip & sample are not in perennial contact

    Tip is oscillated at resonance frequency

    Amplitude set-point is used Used for soft, loosely attached samples

  • 7/31/2019 BME610 Shamik Sen

    19/58

    Mode of Operation: Force Mode

    Tip & sample distance is varied

  • 7/31/2019 BME610 Shamik Sen

    20/58

  • 7/31/2019 BME610 Shamik Sen

    21/58

  • 7/31/2019 BME610 Shamik Sen

    22/58

    Imaging Biological Samples: Effect of Gain

  • 7/31/2019 BME610 Shamik Sen

    23/58

    Gain Control

  • 7/31/2019 BME610 Shamik Sen

    24/58

    Low Gain Vs High Gain

  • 7/31/2019 BME610 Shamik Sen

    25/58

    Setting Setpoint

  • 7/31/2019 BME610 Shamik Sen

    26/58

    Setting Setpoint

  • 7/31/2019 BME610 Shamik Sen

    27/58

    Setting Scan Rate

  • 7/31/2019 BME610 Shamik Sen

    28/58

    Setting Scan Rate

  • 7/31/2019 BME610 Shamik Sen

    29/58

    Gain, Setpoint, and Rate all greatly contributeto image quality and data fidelity.

    There are no hard-and-fast rules or values for

    any of these parameters.

    Good image quality usually relies on aninterplay of different values for these parameters

    In general, adjustments to values should startwith gain, then setpoint, and finish with rate.

    Optimizing Gain, Setpoint & Rate

  • 7/31/2019 BME610 Shamik Sen

    30/58

    Some Images with Optimized Parameters

    DNA in Liquid E-Coli

  • 7/31/2019 BME610 Shamik Sen

    31/58

    Osteoblast Cell

    Endothelial Cell

    Endothelial Cell(Mannitol treated)

    h

  • 7/31/2019 BME610 Shamik Sen

    32/58

    Force Measurements with AFM

    What Can Force Curves Tell Us?

    Adhesion: receptor-ligand bindingElasticity: cell stiffnessTethered eventProtein unfoldingBinding

    Hookes Law:F = k * x = forcek= spring constant/stiffnessx= displacement of the spring

    BUT First:

    Calibrate the tip!!

  • 7/31/2019 BME610 Shamik Sen

    33/58

    C d f i h dh i

  • 7/31/2019 BME610 Shamik Sen

    34/58

    Force Curve: Hard surface with adhesion

  • 7/31/2019 BME610 Shamik Sen

    35/58

  • 7/31/2019 BME610 Shamik Sen

    36/58

    Cantilever Stiffness & Resonance Frequency

    1/2

    2

    2

    ~ ( / )

    0.5

    0.5

    /

    c eff

    B

    c

    c B

    k m

    E k T

    E k d

    k k T d

    Non-destructiveEasy to do

  • 7/31/2019 BME610 Shamik Sen

    37/58

    F C S ft f ith dh i

  • 7/31/2019 BME610 Shamik Sen

    38/58

    Force Curve: Soft surface with adhesion

    Di t d F C Fib bl t

  • 7/31/2019 BME610 Shamik Sen

    39/58

    Directed Force Curves: Fibroblasts

    E t ti Stiff V l

  • 7/31/2019 BME610 Shamik Sen

    40/58

    Extracting Stiffness Values

    2

    2

    2

    tan 1

    cellEF

    3/ 2 1/ 2

    2

    4

    3 1

    cellEF R

    Sneddons Model Hertz Model

    Q tit ti El ti it M t

  • 7/31/2019 BME610 Shamik Sen

    41/58

    Patterned cardiac myocyte on PDMS/glassCourtesy: Prof. K. Parker & Dr. N. Geisse,Harvard University

    Quantitative Elasticity Measurements

    Q tit ti El ti it M t

  • 7/31/2019 BME610 Shamik Sen

    42/58

    Quantitative Elasticity Measurements

    Topography/stiffness map of a lamellipodia of a spreading fibroblast(Solon et al., Biophys 07)

    D t V A tif t i F M t

  • 7/31/2019 BME610 Shamik Sen

    43/58

    Data Vs Artifact in Force Measurements

    Do these varying values reflect heterogeneity of thecell or are these artifacts??

    Data Vs Artifact in Force Measurements:

  • 7/31/2019 BME610 Shamik Sen

    44/58

    Data Vs Artifact in Force Measurements:What are you probing?

    Membrane Vs Cytoskeleton

    A

    B

  • 7/31/2019 BME610 Shamik Sen

    45/58

    Choice of tip geometry in probing cells

  • 7/31/2019 BME610 Shamik Sen

    46/58

    Choice of tip geometry in probing cells

    Sharp tips may rupture cell membrane

    Sharp tips may pass through pores in the cell membrane

    Sharp tip provides very localized information of stiffness

    Spherical tip more gentle on cells

    Spherical tip provides averaged stiffness information

    Effect of location of probing more important for sharp tips compared tospherical tips

    St d i Adh i ith AFM

  • 7/31/2019 BME610 Shamik Sen

    47/58

    Studying Adhesion with AFM

    Receptor-ligand interactionsCell-cell interactions

    Q tif i R d Bl d C ll M h

  • 7/31/2019 BME610 Shamik Sen

    48/58

    Phagocyte

    Signaling Self

    Clustering

    flow

    RBC

    Binding

    CD47

    SIRPa

    Quantifying Red Blood Cell-MacrophageInteractions

    Model System: Adhesively spread red cell

  • 7/31/2019 BME610 Shamik Sen

    49/58

    Spread erythrocyte

    glass (-)

    poly-lysine layer (+++)

    Model System: Adhesively spread red cell

    negatively charged membrane constant cell volume constant membrane area

    2.5 m

    Imaged in AFM contact mode after glutaraldehyde fixation.

    Strong Adhesion Limit Tensed Spherical Caps

    AFM probing of unfixed cell membrane

  • 7/31/2019 BME610 Shamik Sen

    50/58

    AFM probing of unfixed cell membrane

    Indentation

    z(nm)

    Force(pN)

    Indentation

    Retraction

    Adhesive detachment

    0 200 400 600 800 1000

    0

    4000

    8000

    12000

    z

    Adhesion ?

    Retraction with detachment

    Probing CD47 SIRP interactions

  • 7/31/2019 BME610 Shamik Sen

    51/58

    80

    60

    40

    20

    0

    0 1 2 3 4

    frequency

    SIRP (human)

    1

    2

    34

    Human RBC

    Rat RBC

    # of peaks

    Probing CD47- SIRP interactions

    CD47 SIRP interaction is species restricted

    Probing human CD47- human SIRP interactions

  • 7/31/2019 BME610 Shamik Sen

    52/58

    0 100 200 300 400 500

    0

    500

    1000

    1500

    2000

    2500

    Extension (nm)

    Force(pN)

    0 100 200 300 400 500

    0

    10

    20

    30

    Peak to peak length (nm)

    frequency

    0 50 100 150 2000

    10

    20

    30

    Force (pN)

    frequency

    0 5 00 1 00 0 15 00 20 00 2 50 0 30 00

    0

    10

    20

    30

    Force (pN)

    frequency 0.5 mg/ml 0.05 mg/ml

    2nd sawtooth1st sawtooth

    SIRP SIRP

    g

    1500 pN first peak forces; 600 pN second peak forces at highconcentrations

    At low concentration, peaks ~ 100 pN

    215 nm mean extension

    P k #1 Cl t #1

    CD47-SIRP adhesion: Rate-dependence, & Valency of clusters

  • 7/31/2019 BME610 Shamik Sen

    53/58

    Peak #2 = Cluster #2

    Peak #1 = Cluster #1

    ~ 7 bonds break in parallel

    < 4 bonds in parallel

    Single bond strength:

    70 pN @ 5 mm/sec

    Second cluster shows:

    fewer bonds

    longer time needed

    velocity ( m/s)

    Indentation time (msec)

    100

    1000

    0 5 10 15 20 25

    e -time/500 msec

    firstpkfo

    rces(pN)

    500 20 500 20

    0 5 10 15 20 25

    100

    e -time/1200 msec

    velocity ( m/s)

    Indentation time (msec)

    second

    pkfo

    rces(pN)

    3 bonds break in parallel

    ~1 bond

    CD47-SIRP Rate-dependence of Clustering -

  • 7/31/2019 BME610 Shamik Sen

    54/58

    Phagocyte

    Signaling Self

    Clustering

    flow

    RBC

    Binding

    CD47

    SIRPa

    CD47-SIRP Rate-dependence of Clustering -implications for Signaling

    tx ~ crossover from one cluster to two clusters

    %

    peaks

    1 10

    10

    20

    30

    40

    50

    60

    70

    80

    90

    500 20Indentation time (msec)

    Studying Force Spectroscopy with AFM

  • 7/31/2019 BME610 Shamik Sen

    55/58

    Studying Force Spectroscopy with AFM

    Protein Unfolding of Titin

  • 7/31/2019 BME610 Shamik Sen

    56/58

    Protein Unfolding of Titin

    Combined AFM & Microscopy

  • 7/31/2019 BME610 Shamik Sen

    57/58

    Combined AFM & Microscopy

    AFM: Provides high resolution images, and can characterize

    biological forces and mechanics

    Optical Microscopy: provides chemical/functional sensitivity; canlook below the surface of a specimen

    Both: Can correlate fluorescently labeled structures withtopography

    Mechanical stimulation with AFM

  • 7/31/2019 BME610 Shamik Sen

    58/58

    Mechanical stimulation with AFM