BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de...

302
UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL PREVENTIVO DE TOBILLO: ELÁSTICO vs. NO ELÁSTICO Javier Abián Vicén Toledo, 2008

Transcript of BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de...

Page 1: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

UNIVERSIDAD DE CASTILLA-LA MANCHA

Departamento de Didáctica de la Expresión

Musical, Plástica y Corporal

BIOMECÁNICA DEL VENDAJE FUNCIONAL PREVENTIVO DE TOBILLO: ELÁSTICO vs.

NO ELÁSTICO

Javier Abián Vicén

Toledo, 2008

Page 2: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL
Page 3: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

UNIVERSIDAD DE CASTILLA-LA MANCHA

Departamento de Didáctica de la Expresión

Musical, Plástica y Corporal

BIOMECÁNICA DEL VENDAJE FUNCIONAL PREVENTIVO DE TOBILLO: ELÁSTICO vs.

NO ELÁSTICO

Memoria que presenta el Licenciado

Javier Abián Vicén Para optar al grado de Doctor por la Universidad

de Castilla-La Mancha

Toledo, 2008

Page 4: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL
Page 5: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

SOLICITUD DE ADMISIÓN A TRÁMITE DE LA TESIS DOCTORAL

I. Datos Personales.

Apellidos ABIÁN VICÉN

Nombre JAVIER

Dirección AVENIDA RIO JALÓN Nº15

C. Postal 50300 Población CALATAYUD Provincia ZARAGOZA

Teléfono 651413308 E.mail [email protected]

II. Datos de la Tesis. Programa de Doctorado EDUCACIÓN FÍSICA: NUEVAS PERSPECTIVAS

Órgano responsable del programa de Doctorado

DEPARTAMENTO DE DIDÁCTICA DE LA EXPRESIÓN MUSICAL, PLÁSTICA Y CORPORAL

Tutor XAVIER AGUADO JÓDAR

Título de la Tesis BIOMECÁNICA DEL VENDAJE FUNCIONAL PREVENTIVO DE TOBILLO: ELÁSTICO vs. NO ELÁSTICO

Director/es de Tesis XAVIER AGUADO JÓDAR

LUIS MARÍA ALEGRE DURÁN

SOLICITA: Que siendo positivos los informes de valoración previa de la Tesis Doctoral que se adjuntan, y contando igualmente con la autorización del Director/es de Tesis y la conformidad del órgano responsable del Programa de Doctorado, sea admitida la misma a trámite por la Comisión de Doctorado.

Toledo, a 30 de junio de 2008 EL DOCTORANDO

Fdo.: Javier Abián Vicén

SR. PRESIDENTE DE LA COMISIÓN DE DOCTORADO.

El que suscribe, Dr.D ._Xavier Aguado Jódar y Luis María Alegre Durán__, como Director de la Tesis, AUTORIZA su presentación en orden a los trámites previos a su defensa de acuerdo con lo previsto en el RD 778/1998, de 30 de abril, y en el art.- 34 de las Normas Reguladoras de los Estudios de Tercer Ciclo en la Universidad de Castilla-La Mancha.

Toledo, a 30 de Junio de 2008 EL DIRECTOR DE TESIS

(firma)

El Director del órgano responsable del Programa de Doctorado de _______________________________________ __________________________________________________ da su conformidad para la presentación de la Tesis Doctoral a la Comisión de Doctorado, teniendo en cuenta la Autorización concedida por el Director/s de la Tesis.

________________, a ____ de _____________ de 200___ EL DIRECTOR DEL ÓRGANO RESPONSABLE DEL PROGRAMA

DE DOCTORADO* (firma)

*Departamento, Centro, Instituto Universitario

Page 6: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL
Page 7: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

A mis padres, Antonio y Mari Carmen

A mis hermanos, María y Pablo

A mis abuelos, Felipe “Chato” y María

Page 8: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL
Page 9: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

AGRADECIMIENTOS

Quiero expresar mi más profundo agradecimiento a todas las personas e

instituciones que han colaborado, directa o indirectamente, en la realización de esta tesis.

A mis directores de tesis, Xavier Aguado Jódar y Luis María Alegre Durán, por

la confianza que han depositado en mí, por el tiempo y esfuerzo dedicado por cada uno

de ellos para que este trabajo saliese adelante.

A José Manuel Fernández Rodríguez, artesano del vendaje, por su participación

en la fase experimental y por su colaboración como viejo conocedor del arte de vendar,

además de fisioterapeuta y profesor universitario. Sin su participación este trabajo no

hubiera sido posible o hubiera sido, cuanto menos, diferente.

A mis compañeros de laboratorio, Amador Lara Sánchez, Jacobo Rubio Arias y

Sergio Sordo Gutiérrez por su apoyo y colaboración durante estos años en el

laboratorio.

A la Consejería de Educación y Ciencia de la Junta de Comunidades de Castilla-

La Mancha y al Fondo Social Europeo, por haberme ofrecido la posibilidad de

desarrollar el trabajo necesario para esta Tesis a través de las “Ayudas para la formación

de personal investigador”.

A la Facultad de Ciencias del Deporte de la Universidad De Castilla-La Mancha,

por haberme prestado todo el apoyo necesario para poder llevar a cabo esta tesis y en

cuyas instalaciones se han desarrollado los estudios que la componen.

Page 10: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

A todos los sujetos participantes en los estudios, a los estudiantes de la Facultad

de Ciencias del Deporte de Toledo y a mis compañeros de la Residencia Francisco

Tomás y Valiente. Por su colaboración desinteresada en todos y cada uno de los

estudios que componen la Tesis y por su paciencia y entusiasmo.

Por último, y no por eso menos importantes, a mis padres, Antonio y Mª

Carmen; hermanos, María y Pablo; a mi tío José Antonio y a Almudena, por todo el

apoyo y consejos que me han prestado, no solamente durante la carrera sino a lo largo

de mi vida. Y una mención especial a mis abuelos, Felipe y María, aunque ya no estén

presentes. Muchas gracias por todo.

Page 11: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

ABREVIATURAS UTILIZADAS

Las abreviaturas de los convenios internacionales de unidades de medida y las

principales abreviaturas estadísticas no se incluyen en esta relación al existir normas

internacionalmente aceptadas sobre su uso.

a: distancia desde el maléolo externo a la cabeza del peroné

Aciertos: porcentaje de tiempo que se mantenía el sujeto dentro del círculo iluminado

ACL: Anterior Cruciate Ligament o ligamento cruzado anterior

BDJ: Before a Drop Jump o previo a un Drop Jump

BW: Body Weights o veces el peso corporal

C: pies cavos

CMJ: Countermovement Jump o salto con contramovimiento

d: diferencia de medias de la variable a estudiar

DIF: diferencia

DJ: Drop Jump

ET: Elastic Tape o vendaje elástico

F1: primer pico de fuerza

F2: segundo pico de fuerza

F3: tercer pico de fuerza

h: altura del salto

H: hombres

hl: Height of Landing o diferencia en la altura del centro de gravedad entre el instante

de tocar el suelo previo a la amortiguación y el instante del despegue del salto.

ICC: Intraclass Correlation Coefficient o coeficiente de correlación intraclase

IT: Inelastic Tape o vendaje no elástico

L0.30: amortiguación de caída desde 0.30 m

Page 12: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

L0.75: amortiguación de caída desde 0.75 m

Lr: Landing Range o descenso del centro de gravedad desde el inio de la amortiguación

hasta el punto más bajo.

M: mujeres

N: normal, sin vendaje.

P: pies planos

PF: pico de fuerza

PP: Peak Power o pico de potencia

Promedio de X: posición media del centro de presiones en el eje antero-posterior

Promedio de Y: posición media del centro de presiones en el eje medio-lateral

ROM: Range of Movement o rango de movimiento

SAL: salida después de la amortiguación

SCA: salto con aproximación

T: Tape o con vendaje.

t: tiempo de vuelo

T1: instante en el que sucedía el primer pico de fuerza

T1: longitud de la primera tira activa en el vendaje elástico

T2: instante en el que sucedía el segundo pico de fuerza

T2: longitud de segunda tira activa en el vendaje elástico

TBW: Time Body Weight o tiempo desde el inicio de contacto con el suelo hasta que el

valor de la fuerza de reacción vertical cruzaba por primera vez el peso del sujeto

UE: With Upper Extremities o amortiguación con ayuda de brazos

WUE: Without Upper Extremities o amortiguación sin ayuda de brazos

Zα: coeficiente asociado al error tipo α, que se fijó en el 5%

Zβ: coeficiente asociado al error tipo β, que se fijó en el 10-20%

Page 13: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

ÍÍnnddiiccee

Page 14: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL
Page 15: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

Índice

1.- RESUMEN 9

2.- ESTADO ACTUAL DE CONOCIMIENTOS 15

2.1.- BIOMECÁNICA DEL TOBILLO 17

2.1.1.- Articulaciones y movimientos del tobillo 17

2.1.2.- Ligamentos 21

2.1.3.- Músculos 24

2.1.4.- Etiología lesional 26

2.1.5.- Factores de riesgo 29

2.1.5.1.- Las recidivas 29

2.1.5.2.- Flexibilidad 29

2.1.5.3.- Fatiga y debilidad muscular 30

2.1.5.4.- Competición vs entrenamiento 30

2.1.5.5.- Deportes de colaboración-oposición 30

2.1.6.- Medidas preventivas 31

2.1.6.1.- Propiocepción 32

2.1.6.2.- Fortalecimiento muscular 33

2.1.6.3.- Soportes externos de tobillo 34

2.2.- BIOMECÁNICA DEL VENDAJE FUNCIONAL PREVENTIVO 44

2.2.1.- Indicaciones, limitaciones y efectos secundarios 46

2.2.2.- Acciones del vendaje 48

2.2.2.1.- Mecánica 49

2.2.2.2.- Exteroceptiva 50

2.2.2.3.- Propioceptiva 51

2.2.2.4.- Psicológica 51

2.2.3.- Restricción y fatiga 52

2.2.4.- Pérdida de eficacia 57

2.2.5.- Influencia del vendaje en el equilibrio 59

2.2.6.- Influencia del vendaje en la capacidad de amortiguación 60

2.2.6.1.- Características generales de las amortiguaciones

de caídas 60

2.2.6.2.- Riesgo de lesión en las amortiguaciones 63

2.2.6.3.- Influencia del vendaje en la amortiguación 66

Page 16: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

Biomecánica del vendaje funcional de tobillo

2.2.7.- Influencia en otros aspectos de la biomecánica 68

2.3.- TIPOS DE FABRICACIÓN BÁSICOS 70

2.3.1.- Con vendas no elásticas 72

2.3.1.1.- Propiedades de los materiales no elásticos 72

2.3.1.2.- Características de los vendajes no elásticos 74

2.3.2.- Con vendas elásticas 75

2.3.2.1.- Propiedades de los materiales elásticos 75

2.3.2.2.- Características de los vendajes elásticos 76

2.3.3.- Combinación vendas no elásticas y vendas elásticas 78

3.- OBJETIVOS 79

3.1.- OBJETIVOS GENERALES 81

3.2.- OBJETIVOS ESPECÍFICOS 81

4.- METODOLOGÍA 83

4.1.- DISEÑO EXPERIMENTAL 85

4.2.- PROTOCOLOS 87

4.2.1.- Normas éticas y criterios de inclusión 87

4.2.2.- Cineantropometría 88

4.2.3.- Familiarización y calentamiento 89

4.2.4.- Elaboración de los vendajes funcionales preventivos de tobillo 90

4.2.4.1.- Con vendas no elásticas 90

4.2.4.2.- Con vendas elásticas 91

4.3.- TRATAMIENTO DE DATOS 94

4.4.- ESTUDIOS METODOLÓGICOS 96

4.4.1.- Estudio 1: Fuerzas de reacción del suelo en pies planos

y cavos 96

4.4.1.1.- Propósito 96

4.4.1.2.- Sujetos 96

4.4.1.3.- Tests 97

4.4.1.4.- Variables 100

4.4.1.5.- Estadística 101

Page 17: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

Índice

4.4.2.- Estudio 2: Diferencias de sexo durante la amortiguación

de caídas en test de salto 103

4.4.3.1.- Propósito 103

4.4.3.2.- Sujetos 103

4.4.3.3.- Tests 104

4.4.3.4.- Variables 105

4.4.3.5.- Estadística 105

4.4.3.- Estudio 3: Diferencias de sexo en las fuerzas de reacción

del suelo en seis tipos de amortiguación 106

4.4.4.1.- Propósito 106

4.4.4.2.- Sujetos 106

4.4.4.3.- Tests 106

4.4.4.4.- Variables 108

4.4.4.5.- Estadística 109

4.5.- ESTUDIOS APLICADOS

4.5.1.- Estudio 4: Influencia del vendaje no elástico de tobillo

en el equilibrio y el salto 110

4.4.5.1.- Propósito 110

4.4.5.2.- Sujetos 110

4.4.5.3.- Tests 110

4.4.5.4.- Variables 114

4.4.5.5.- Estadística 115

4.5.2.- Estudio 5: Vendaje elástico vs no elástico 116

4.4.6.1.- Propósito 116

4.4.6.2.- Sujetos 116

4.4.6.3.- Tests 117

4.4.6.4.- Variables 118

4.4.6.5.- Estadística 119

5.- RESULTADOS Y DISCUSIÓN 121

5.1.- ESTUDIOS METODOLÓGICOS 123

5.1.1.- Estudio 1: Fuerzas de reacción del suelo en pies

planos y cavos 123

Page 18: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

Biomecánica del vendaje funcional de tobillo

5.1.1.1.- Resultados 123

5.1.1.2.- Discusión 125

5.1.2.- Estudio 2: Diferencias de sexo durante la amortiguación

de caídas en test de salto 129

5.1.2.1.- Resultados 129

5.1.2.2.- Discusión 142

5.1.3.- Estudio 3: Diferencias de sexo en las fuerzas de reacción

del suelo en seis tipos de amortiguación 139

5.1.3.1.- Resultados 139

5.1.3.2.- Discusión 142

5.2.- ESTUDIOS APLICADOS 149

5.2.1.- Estudio 4: Influencia del vendaje no elástico de tobillo

en el equilibrio y el salto 149

5.2.1.1.- Resultados 149

5.2.1.2.- Discusión 151

5.2.2.- Estudio 5: Vendaje elástico vs no elástico 155

5.2.2.1.- Resultados 155

5.2.2.2.- Discusión 159

6.- CONCLUSIONES 167

7.- BIBLIOGRAFIA 171

8.- ANEXOS 199

Anexo 1: Carta de consentimiento

Anexo 2: Cuestionario sobre actividad física y lesiones

Anexo 3: Artículos

3.1.- Ya publicados

− Abián J, Alegre LM, Jiménez L, Lara AJ, Aguado X. (2005).

Fuerzas de reacción del suelo en pies cavos y planos. Archivos

de Medicina del Deporte, 108: 285-292.

− Abián J, Alegre LM, Fernández JM, Lara AJ, Meana M,

Aguado X. (2006). Avances del vendaje funcional de tobillo en

el deporte. Archivos de Medicina del Deporte, 113: 219-229.

Page 19: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

Índice

− Abián J, Alegre LM, Lara AJ, Aguado X. (2006). Diferencias

de sexo durante la amortiguación de caídas en tests de salto.

Archivos de Medicina del Deporte, 116: 441-450.

− Abián J, Alegre LM, Fernández JM, Aguado X. (2007). El

vendaje funcional elástico vs no elástico en saltos y

amortiguaciones. Archivos de Medicina del Deporte, 122: 442-

449.

− Abián J, Alegre LM, Lara AJ, Rubio JA, Aguado X. (2008)

Kinetic differences between young men and women in landings

from jump tests. Journal of Sports Medicine and Physical

Fitness, 48: 305-310.

− Abián-Vicén J, Alegre LM, Fernández-Rodríguez JM, Lara

AJ, Meana M, Aguado X. (2008) Ankle taping does not impair

performance in jump or balance tests. Journal of Sports Science

and Medicine, 7: 350-356.

3.2.- Aceptados, en imprenta

− Abián-Vicén J, Alegre LM, Fernández-Rodríguez JM,

Aguado X. Prophylactic ankle taping: elastic versus inelastic

taping. Aceptado, pendiente de publicación en Foot & Ankle

International.

Anexo 4: Pósters

− Abián J, Alegre LM, Lara AJ, Aguado X. (2006). Kinetic

differences between men and women in six landing situations. 11th

Annual Congress of the European College of Sport Science. Lausanne

(Suiza).

− Abián J, Alegre LM, Lara AJ, Rubio JA, Aguado X. (2007).

Differences between men and woman in landings from jump tests.

12th Annual Congress of the European College of Sport Science.

Jyväskylä (Finlandia).

− Abián J, Alegre LM, Fernández JM, Aguado X. (2007). Kinetic

analysis of the range of movement with two types of prophylactic

ankle taping: inelastic vs elastic taping. 12th Annual Congress of the

European College of Sport Science. Jyväskylä (Finlandia).

Page 20: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

Biomecánica del vendaje funcional de tobillo

Page 21: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

11.. RReessuummeenn

Page 22: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL
Page 23: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

Resumen

RESUMEN

En este trabajo se ha puesto a punto la metodología para valorar por medio del

análisis de fuerzas de reacción diferentes tipos de tests de salto y amortiguación, que

posteriormente se han utilizado para comparar dos vendajes funcionales preventivos de

tobillo; uno elástico y otro no elástico.

Objetivo: El objetivo del trabajo ha sido analizar el efecto del vendaje funcional

preventivo de tobillo (elástico y no elástico) en la capacidad de restricción de

movimientos y en la posible pérdida de eficacia en la realización de diferentes tipos de

tests, así como analizar la fatiga del vendaje después de realizar los tests.

Metodología: Han participado un total de 470 sujetos (313 hombres y 157

mujeres), distribuidos entre cinco estudios. Se han realizado tests de: marcha, carrera,

cambio de dirección, salto, amortiguación de caída y equilibrio. Se han analizado

variables cinéticas: los picos de fuerza y los instantes en los que sucedían, duraciones de

apoyos en los movimientos, así como en algunos casos los picos de potencia y el

recorrido vertical del centro de gravedad. En el caso de los tests de equilibrio se registró

el recorrido del centro de presiones y se consideraron las variables derivadas del mismo.

Se han usado tres plataformas de fuerzas: dos piezoeléctricas Kistler: Una 9281 CA y

una Quattro Jump y una extensiométrica Dinascan 600 M. Para la valoración de la

restricción de los movimientos del tobillo y la fatiga del vendaje se midieron la

inversión, eversión, flexión y extensión máximas pasivas del tobillo derecho con un

goniómetro manual.

Resultados y discusión: En los tests máximos los sujetos con pies cavos

mostraron mayores valores en los picos de fuerza (p<0.05) mientras que los planos los

mostraron en la duración de los apoyos (p<0.01). En la amortiguación de tests de salto

las mujeres mostraron menores valores en el segundo pico de fuerza (mujeres = 5.89 ±

11

Page 24: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

Biomecánica del vendaje funcional de tobillo

2.06 BW y hombres = 7.51 ± 2.38 BW, p<0.001), mayor recorrido del centro de

gravedad (mujeres = 11.06 ± 2.72% y hombres = 10.43 ± 2.43%, p<0.05) y un retraso

en el tiempo desde el inico del contacto del pie en el suelo hasta la aparición del

segundo pico de fuerza. Los picos de fuerza vertical durante amortiguaciones cayendo

desde una superficie elevada a 0.75 m fueron mayores en el grupo de mujeres que en el

de hombres (mujeres entre 7.01 y 8.15 BW y hombres entre 5.48 y 6.14 BW, p<0.05),

mientras que las diferencias no fueron significativas cuando se realizaban

amortiguaciones previo salto desde el suelo. El vendaje no influyó en el rendimiento de

los tests de equilibrio, ni en la batida del test de salto. Sin embargo, se obtuvo un mayor

valor en el segundo pico de fuerza de la amortiguación de la caída del salto con el

vendaje funcional preventivo no elástico (sin vendaje = 5.38 ± 1.61 BW y con vendaje =

6.04 ± 1.87 BW; p<0.05). Los dos vendajes restringieron de forma significativa

(p<0.001) la supinación y la extensión una vez colocados y después del ejercicio ambos

vendajes se fatigaron tanto en la inversión (vendaje no elástico = 26.74% y vendaje

elástico = 20.84%) como en la extensión (vendaje no elástico = 8.41% y vendaje

elástico = 6.36%). El vendaje no elástico se fatigó más que el elástico en la inversión

(p<0.05), sin embargo los sujetos percibieron el vendaje elástico más cómodo y menos

restrictivo (p<0.001). No se encontraron diferencias en las alturas de los saltos, no

obstante, en el pico de potencia el vendaje no elástico presentaba valores superiores

(vendaje no elástico = 38.93 ± 6.10 W/kg y vendaje elástico = 37.77 ± 6.27 W/kg,

p<0.05). Tampoco se encontraron diferencias en el segundo pico de fuerza vertical

durante la amortiguación de la caída, sin embargo, con el vendaje no elástico, en los

tests en los que se buscaba máxima amortiguación, el segundo pico de fuerza sucedía

antes (con el vendaje no elástico desde 0.3 m sucedía a los 0.043 s y desde 0.75 m

sucedía a los 0.032 s) que con el vendaje elástico (p<0.05) o sin vendaje (p<0.01).

12

Page 25: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

Resumen

Conclusiones: La utilización de los vendajes funcionales preventivos de tobillo

(elástico y no elástico) no ha mostrado influencia sobre el rendimiento en ninguno de

los tests de equilibrio y salto estudiados. En sujetos de características similares a los que

han participado en este estudio, recomendaríamos utilizar el vendaje elástico frente al

no elástico debido a que no ha modificado ningún aspecto de los analizados en la

biomecánica del tobillo, ha producido la misma limitación en el movimiento, se ha

fatigado menos y ha sido percibido como más cómodo y menos restrictivo por parte de

los sujetos.

Palabras clave: Plataforma de fuerzas, tests de salto, tests de amortiguación de

caídas, salto con contramovimiento, sexo, ligamento cruzado anterior, prevención de

lesiones.

Códigos UNESCO: 240604, 240600, 321311, 321000.

13

Page 26: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

Biomecánica del vendaje funcional de tobillo

14

Page 27: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

22.. EEssttaaddoo aaccttuuaall ddee ccoonnoocciimmiieennttooss

Page 28: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL
Page 29: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

Estado actual de conocimientos

2.1.- BIOMECÁNICA DEL TOBILLO

En este apartado se van a describir las articulaciones del tobillo, sus capacidades

de movimiento, sus ligamentos y los músculos que las rodean. Por otro lado se

describirá la etiología lesional y los principales factores de riesgo, y finalmente las

medidas preventivas que se suelen utilizar para proteger el tobillo de posibles lesiones.

2.1.1.- Articulaciones y movimientos del tobillo

El tobillo lo conforman principalmente dos articulaciones. Por un lado, la

suprastragalina formada por la mortaja tibio-peronea y el astrágalo, y por otro, la

subastragalina formada por la cara inferior del astrágalo y la superior del calcáneo. La

cápsula articular, que es laxa en las caras anterior y posterior, está reforzada por

importantes complejos ligamentosos.

La articulación suprastragalina es una trocleartrosis, en la que se realiza el

movimiento de flexión (flexión dorsal) y de extensión (flexión plantar) del pie con

respecto a la pierna. (Figura 2.1).

Flexión

Extensión

Figura 2.1: Articulación suprastragalina y movimientos de flexión y extensión que se dan en esta articulación (adaptado de Calais-Germanin, 1996).

17

Page 30: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

Biomecánica del vendaje funcional de tobillo

La articulación subastragalina es una artrodia. Se compone de dos

articulaciones que se establecen entre las carillas inferiores del astrágalo y las superiores

del calcáneo. Aunque morfológicamente podrían clasificarse como trocoides,

funcionalmente constituyen una sola articulación (artrodia) (Figura 2.2).

inversión eversión

extensión

abducción

flexión

adducción

(eje sagital)

(eje frontal)

(eje vertical)

Figura 2.2: Articulación subastragalina y movimientos que se dan en esta articulación (adaptado de Calais-Germanin, 1996).

El tobillo (suprastragalina + subastragalina), con la ayuda de la rotación axial de

la rodilla, tiene movimientos en tres ejes de libertad, los cuales permiten orientar la

bóveda plantar en todas la direcciones para adaptarla a los accidentes del terreno, a

diferentes actividades (como la marcha) y a diversas situaciones deportivas.

18

Page 31: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

Estado actual de conocimientos

Los movimientos que se dan en estos ejes son:

Flexión y extensión: Movimientos que discurren en un plano sagital, en los que

la zona distal del pie se aleja de la tibia (extensión) o se aproxima a la tibia (flexión). Su

amplitud natural es de 20 a 30º de flexión y de 30 a 50º de extensión. Este movimiento

se produce principalmente en la articulación suprastragalina aunque en los movimientos

extremos se añade la amplitud propia de las articulaciones del tarso (Kapandji, 1996)

(Figura 2.3).

Inversión y eversión: existen dos terminologías diferentes (americana y europea)

que afectan a los conceptos de inversión/eversión y supinación/pronación. En este

trabajo se ha optado por utilizar la americana debido a que la usan la mayoría de

trabajos que estudian la biomecánica del tobillo en el deporte y así se pueden comparar

de forma directa los resultados y compartir una misma terminología. La inversión y la

eversión en la terminología americana son movimientos que tienen lugar en un plano

frontal, en los que la superficie plantar se inclina en el sentido de enfrentamiento al

plano medio sagital (inversión) o alejamiento del plano medio sagital (eversión) (Root y

cols., 1991). Este movimiento se origina básicamente en la articulación subastragalina.

La amplitud natural de estos movimientos es de 52º de inversión y de 25 a 30º la

eversión (Kapandji, 1996) (Figura 2.3).

Adducción y abducción: Movimientos que tienen lugar sobre un plano

horizontal, en los que la zona distal del pie se desplaza hacia la línea media del cuerpo

(adducción), o separándose de la línea media del cuerpo (abducción). La amplitud total

de estos movimientos es de 35 a 45º. (Kapandji, 1996) (Figura 2.3).

19

Page 32: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

Biomecánica del vendaje funcional de tobillo

a) b) c)

20-30º

30-50º25-35º 52º

35-45º

Figura 2.3: Movimientos de flexión y extensión (a), inversión y eversión (b) y adducción y abducción (c) del tobillo (adaptado de Rouviere y Delmas, 1996).

Los movimientos en estos ejes no se dan prácticamente nunca en estado puro,

sino de forma combinada. La supinación consiste en la combinación simultánea de

adducción, inversión y extensión, mientras que la pronación consiste en abducción,

eversión y flexión. El eje para este movimiento atraviesa el pie desde posterior, lateral y

plantar, hasta anterior, medial y dorsal y se le denomina eje de Fick (Figura 2.4).

Figura 2.4: Movimientos de flexión y extensión (eje CD) y de supinación y pronación en el eje de Fick (AB) (adaptado de Martin y Soto, 1995).

20

Page 33: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

Estado actual de conocimientos

2.1.2.- Ligamentos

Existen dos sistemas para mantener el astrágalo dentro de la mortaja tibio-

peronea. El sistema de contención, que viene representado por la propia estructura

anatómica (mortaja), y el de retención, que está compuesto por la cápsula articular y

sus refuerzos laterales ligamentosos, así como los tendones periarticulares, que se

comportan como ligamentos activos (Rodríguez, 1998). Los ligamentos laterales

(externo e interno) forman a cada lado de la articulación unos potentes abanicos

fibrosos, cuyo vértice se fija en el maléolo correspondiente y la periferia en los dos

huesos del tarso posterior (calcáneo y astrágalo).

El ligamento lateral externo está constituido por tres fascículos (dos de ellos se

dirigen al astrágalo y el otro al calcáneo) (Figura 2.5), que a continuación se describen.

Fascículo anterior o peroneoastragalino anterior: está fijado al borde anterior del

maléolo del peroné. Se dirige oblicuamente hacia abajo y hacia delante para fijarse en el

astrágalo entre la carilla externa y la abertura del seno del tarso. Es el que con mayor

frecuencia se lesiona, y su carga máxima para la rotura es de tan solo 297 N (Funk y

cols., 2000).

Fascículo medio o peroneocalcáneo: parte de las proximidades del vértice del

maléolo del peroné y se dirige hacia abajo y hacia atrás para fijarse en la cara externa

del calcáneo. Es el más largo de los ligamentos externos, el más fuerte de los

ligamentos laterales y es capaz de soportar una carga máxima para la rotura de 598 N

(Funk y cols., 2000). Debido a esto y a las características de los mecanismos de lesión,

es muy raro que se lesione de forma aislada (Rodríguez, 1998; Robbins y Waked,

1998).

21

Page 34: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

Biomecánica del vendaje funcional de tobillo

Fascículo posterior o peroneoastragalino posterior: se origina en la cara interna

del maleolo del peroné, por detrás de la carilla articular. Se dirige en sentido horizontal

hacia dentro y algo hacia atrás para fijase en el tubérculo posterior del astrágalo. Es

capaz de soportar una carga máxima para la rotura de 554 N (Robbins y Waked, 1998;

Funk y cols., 2000).

ligamento peroneoas tragali no anterior

ligamento peroneoastragalino posterior

ligamen to peroneocalcáneo

Figura 2.5: Ligamentos del complejo externo del tobillo (adaptado de McAlindon, 2004).

El fascículo peroneocalcáneo es el que tiene un mayor stiffness (mayor módulo

de Young) y mayor resistencia a la rotura. En condiciones fisiológicas es el que mayor

carga de tracción soporta de los tres. El peroneoastragalino posterior se encuentra en

el término medio tanto en stiffness como en resistencia máxima a la rotura, aunque por

la posición anatómica es muy difícil que llegara a lesionarse si no lo han hecho antes los

otros dos fascículos. Por último, el peroneoastragalino anterior que es el que presenta

menor resistencia a la rotura de los tres, pero también se comporta con mayor

compliance (menor módulo de Young) y por su posición es el más propenso a

lesionarse (Figura 2.6).

22

Page 35: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

Estado actual de conocimientos

peroneocalcáneo

peroneoastragalino posterior

peroneoatragalino anter ior

esfu

erzo

(N/m

m )

deformación (%)

2

10 20 30 40

Figura 2.6: Curvas de esfuerzo/deformación de los ligamentos laterales del tobillo (adaptado de Corazza y cols., 2005).

El ligamento lateral interno se reparte en dos planos: profundo y superficial. El

plano profundo está formado por dos fascículos tibioastragalinos, anterior y posterior.

El plano superficial, muy extenso y triangular, forma el ligamento deltoideo (Figura

2.7). Desde su origen tibial se extiende por una línea de inserción inferior, continua en

el escafoides, el borde interno del ligamento glenoideo y la apófisis menor del calcáneo.

23

Page 36: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

Biomecánica del vendaje funcional de tobillo

ligamento tibioastragalino posterior

ligamento tibioastragalino anteriorligamento deltoideo

Figura 2.7: Ligamentos del complejo interno del tobillo (adaptado de McAlindon, 2004).

Para completar los ligamentos del tobillo, debemos hacer referencia a los

ligamentos anterior y posterior de la articulación tibiotarsiana (que son simples

engrosamientos capsulares) y a los ligamentos sindesmóticos, compuestos por el

ligamento tibioperoneo anterior, tibioperoneo posterior e interóseo.

2.1.3.- Músculos

Todos los músculos que tienen acción sobre el tobillo están situados en la pierna,

y sus tendones llegan a diferentes partes del esqueleto del pie. A menudo han de

atravesar espacios estrechos y correderas osteoligamentosas, razón por la cual están

protegidos por vainas sinoviales. En la Figura 2.8 se muestra un esquema de las

acciones de los diferentes músculos en los movimientos del tobillo y a continuación se

va a describir la fuerza generada por cada músculo, según Rouvière y Delmas (1996), en

estos movimientos:

24

Page 37: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

Estado actual de conocimientos

La flexión es producida por el tibial anterior (con una fuerza máxima

aproximada de 25 N) y secundariamente, por el extensor del dedo gordo (4 N) y por el

extensor común de los dedos (8 N).

La extensión es producida por el tríceps sural (Gemelos 88 N y sóleo 73 N) y de

forma secundaria por el tibial posterior (4 N), los flexores de los dedos (4 N), el flexor

del dedo gordo (9 N) y los peroneos laterales (7 N). La fuerza de los músculos que

realizan la extensión puede llegar a 186 N (cinco veces más que la de los músculos que

producen la flexión) por la importancia de su papel en la postura, los desplazamientos y

las batidas.

La supinación es producida por el tríceps sural (47 N), el tibial posterior (15 N),

el tibial anterior (5 N), el flexor común de los dedos del pie (6 N) y el flexor propio del

dedo gordo (7 N).

La pronación es producida por el peroneo lateral largo (6 N), el peroneo lateral

corto (4 N), el extensor común de los dedos del pie (3 N) y el peroneo anterior (2 N),

con un sumatorio total de 15 N.

25

Page 38: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

Biomecánica del vendaje funcional de tobillo

Figura 2.8: Movilidad del tobillo. Los músculos que están por delante del eje de Fick (A-B) producen pronación (eversión + abducción), y los que se hallan por detrás supinación (inversión + aducción). Los músculos que pasan por delante del eje transversal (C-D) son flexores del tobillo, y los que están por detrás extensores. Los puntos oscuros de la figura corresponden a los tendones de los músculos (adaptado de Martin y Soto, 1995).

2.1.4.- Etiología lesional

El tobillo es una articulación fundamental en la práctica de casi todos los

deportes. En muchos de ellos soporta cargas elevadas, que en ocasiones pueden llegar a

ser muy superiores a las soportadas por la rodilla. En un estudio de revisión realizado

por Fong y cols. (2007), el tobillo fue la zona del cuerpo que más se lesionó en 24 de

26

Page 39: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

Estado actual de conocimientos

los 70 deportes revisados, cobrando especial importancia los porcentajes encontrados en

voleibol, con un 41% de las lesiones de este deporte (Verhagen y cols., 2004), en fútbol

con un 41% (Sullivan y cols., 1980), y en balonmano con un 40% (Yde y Nielsen,

1990). Garrick y Requa (1988), en un estudio longitudinal a lo largo de nueve años

(1979-87) encontraron que las lesiones de tobillo correspondían al 76% de todas las

lesiones sucedidas tanto en los deportes de raqueta como en el fútbol americano, el 77%

de las de danza, el 79% de las de baloncesto y el 82% de las de voleibol.

El esguince de tobillo representa entre el 30 y el 50% de todas las lesiones en el

deporte (Garrick y Requa, 1973; Martínez, 1985; Garrick y Requa; 1988, González

Iturri, 1991; Manonelles y Tarrega, 1998; Orchard y Seward, 2003) y es la lesión más

común de las que suceden en el tobillo dándose en el 76,7% de los estudios revisados

por Fong y cols. (2007). En squash, fútbol, rugby, balonmano y voleibol representa más

del 80% de las lesiones de tobillo (Berson y cols., 1981; Brynhildsen, 1990; Gerrard y

cols., 1994; Seil y cols., 1998; Verhagen y cols., 2004).

El mecanismo lesional más frecuente consiste en un movimiento combinado de

inversión y extensión forzadas (Figura 2.9). Este mecanismo se da en el 75-85% de las

lesiones de tobillo (Garrick, 1982; Rodríguez, 1998; Woods y cols., 2003). Inicialmente

se ve afectado el ligamento peroneoastragalino anterior. Pero si la fuerza sigue

progresando, se puede afectar el peroneocalcáneo y finalmente, en pocos casos en la

actividad deportiva, se ve afectado el peroneoastragalino posterior (Rodríguez, 1998;

Bahr y cols., 1994).

27

Page 40: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

Biomecánica del vendaje funcional de tobillo

Figura 2.9: Lesión del ligamento lateral externo de tobillo por el mecanismo de inversión (adaptado de O´Connell, 1995 y McAlindon, 2004).

En un estudio realizado por Woods y cols. (2003), encontraron que el 77% de

los esguinces eran del ligamento lateral y que el 73% de esos esguinces iban

acompañados de rotura o elongación del ligamento peroneoastragalino anterior. Es raro

el mecanismo de lesión en eversión que produciría la lesión del ligamento deltoideo; tan

solo un 15% de las lesiones ligamentosas del tobillo se producen por este mecanismo.

Por otro lado, las recidivas, el dolor y la inestabilidad crónica, son muy

habituales tras los esguinces de tobillo. Según Yeung (1994) los principales problemas

residuales de los esguinces de tobillo son: el dolor (30.2%), la inestabilidad (20.4%), la

crepitación (18.3%), la debilidad (16.5%), la rigidez (14.6%) y la inflamación (13.9%).

Para los tobillos que han tenido entre uno y cuatro esguinces el principal problema

residual es el dolor (24-28%). Sin embargo, para los tobillos que superan los cinco

esguinces, la mayor secuela es la inestabilidad (38%). Los esguinces que no han

recibido un tratamiento adecuado se vuelven a lesionar antes de un año en el 70% de los

casos (Herring, 1990).

28

Page 41: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

Estado actual de conocimientos

2.1.5.- Factores de riesgo

En este apartado se va a hablar de los principales factores de riesgo que afectan a

las lesiones de tobillo, que son: las recidivas, la flexibilidad, la fatiga y debilidad

muscular, la situación de competición vs. entrenamiento y las características particulares

de los deportes de colaboración-oposición.

2.1.5.1.- Las recidivas

Los deportistas que han tenido en algún momento un esguince de tobillo, que

normalmente les deja una mayor laxitud articular, tienen más riesgo de sufrir de nuevo

esta misma lesión (Herring, 1990; Bylak y Hutchinson, 1998; Hubbard y Hertel, 2006).

Al igual que sucede con la hipermobilidad del tobillo, la hipomobilidad o pérdida del

rango de movimiento (ROM) fisiológico (característico de las primeras semanas de

rehabilitación tras el esguince) debido a la inmovilización de la articulación, también

está relacionada con un mayor riesgo de recidiva (Hubbard y Hertel, 2006).

2.1.5.2.- Flexibilidad

Algunos autores han estudiado la influencia que tienen en el riesgo de lesión

determinadas características individuales de los deportistas. Pope y cols. (1998)

encontraron que los sujetos que tenían mayor flexibilidad en la flexión del tobillo,

sufrían menos esguinces. En este mismo sentido, Hertel (2000) encontró que los sujetos

con múltiples episodios de esguince de tobillo tenían reducida la flexión de tobillo. Por

otro lado, Caulfield y Garrett (2002), por medio de un análisis cinemático, revelaron que

los sujetos con tobillo inestable presentaban hipermobilidad de tobillo en diferentes

actividades y tareas.

29

Page 42: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

Biomecánica del vendaje funcional de tobillo

2.1.5.3.- Fatiga y debilidad muscular

Gabbett (2002) en un estudio realizado en la liga de rugby amateur obtuvo que

los jugadores tenían una mayor incidencia de lesiones que los profesionales y que la

incidencia se incrementaba de forma significativa con la fatiga. La pierna dominante es

la que más esguinces de tobillo presenta (Yeung y cols., 1994) y la debilidad muscular

es otro aspecto que condiciona el mayor riesgo de lesión (Brizuela y cols. 1996).

2.1.5.4.- Competición vs entrenamiento

Bahr y cols. (1994) en un estudio realizado con jugadores de voleibol

encontraron que la incidencia en los esguinces de tobillo era cuatro veces mayor en

competición que durante el entrenamiento. En este mismo sentido, Nielsen y Yde

(1989) encontraron más lesiones en competición para categorías superiores pero más en

el entremaniento en las categorías inferiores.

2.1.5.5.- Deportes de colaboración-oposición

La incidencia de lesiones de tobillo es mayor en deportes de colaboración-

oposición, en los que hay contacto entre los componentes de los equipos, como es el

caso del fútbol, fútbol americano, baloncesto, voleibol y balonmano (Jones y cols.,

2000; Meana, 2002; Fong y cols., 2007). Esto se debe principalmente a las

características del juego, así como al gran número de practicantes en todo el mundo.

El baloncesto es el deporte donde se registra mayor número de esguinces de

tobillo (Martínez, 1985; Robbins y Waked, 1998; Rodríguez, 1998; Jones y cols., 2000).

Esto se debe, por un lado, a las características antropométricas de los jugadores ya que

sus tobillos deben soportar un elevado peso con una gran estatura y por otro lado, a las

30

Page 43: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

Estado actual de conocimientos

características propias del juego, como son: la repetición de gestos, aceleraciones y

desaceleraciones bruscas, desplazamientos laterales y saltos. Estas características junto

al constante contacto entre los jugadores y el reducido espacio bajo la canasta, someten

a la articulación del tobillo a esfuerzos que facilitan su lesión (Manonelles y Tárrega,

1998; Rodríguez, 1998).

El balonmano y el fútbol son ampliamente practicados en muchos países. El

fútbol es uno de los deportes con mayor número de practicantes en el mundo, tanto a

nivel aficionado como profesional, lo que genera una elevada incidencia de lesiones.

Estos dos deportes se caracterizan por el constante contacto físico entre los jugadores

combinado con aceleraciones, esfuerzos violentos, golpes, blocajes, saltos y fintas que

incrementan el riesgo de que se den esguinces de tobillo. El esguince de tobillo se ha

identificado como la lesión más frecuente en la traumatología del fútbol, existiendo

demarcaciones en el terreno de juego más expuestas a lesión que otras. Los jugadores

que más se lesionan son los delanteros, seguidos de los defensas (González Iturri y

cols., 1994).

En voleibol, un 63% de los esguinces de tobillo suceden durante la caída del

bloqueo, donde normalmente saltan varios jugadores juntos y es habitual pisar a un

compañero (Bahr y cols. 1994).

2.1.6.- Medidas preventivas

Hay diferentes factores, que deben ser considerados en la prevención de los

esguinces. Entre los más destacados se encuentran: la propiocepción, el fortalecimiento

31

Page 44: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

Biomecánica del vendaje funcional de tobillo

muscular y los soportes externos (vendajes y ortesis). Seguidamente van a ser

escuetamente desarrollados.

2.1.6.1.- Propiocepción

Es complicado separar todas las sensaciones que intervienen en la

propiocepción. Por un lado, la información proveniente de la articulación, el músculo, y

los mecanorreceptores cutáneos y por otro, las señales visuales y auditivas que dan una

información adicional (Riemann y cols., 2002). Por ello, cuando se analiza algún

aspecto propioceptivo se intentan aislar estos dos canales de información para que no

interfieran en las sensaciones provenientes de la articulación (Wikstrom y cols. 2006).

Hay controversia, en cuanto a cómo la respuesta refleja de los músculos

peroneos puede contribuir a la protección de la articulación. Algunas investigaciones

han encontrado incrementos de la latencia de los peroneos en las articulaciones

inestables (Konradsen y Ravn, 1990 y 1991; Karlsson y cols., 1992). Sin embargo, otros

autores no han encontrado diferencias en la respuesta refleja en los sujetos con

inestabilidad en el tobillo (Nawoczenski y cols., 1985; Ebig y cols. 1997).

Nakagawa y Hoffman (2004) encontraron que los sujetos con tobillos inestables,

con frecuencia tenían un control postural menor que se reflejaba en un rendimiento

más bajo en tests de equilibrio estático y dinámico. Gutiérrez y cols. (2007) nos

muestran que hay un mayor riesgo de sufrir esguince de tobillo cuando los músculos

peroneos se fatigan, debido a que se reduce la protección activa que estos músculos

tienen sobre el tobillo. Se ha encontrado que los programas basados en la propiocepción

del tobillo descienden el riesgo de lesiones agudas y crónicas (Eils y cols., 2001)

32

Page 45: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

Estado actual de conocimientos

Kouradsen y cols. (1993) analizaron diversas partes de la propiocepción del

tobillo para relacionarlo con la inestabilidad y el riesgo de sufrir esguinces. Para ello

anestesiaron el ligamento lateral del tobillo de siete sujetos. Midieron la reproducción

de una posición de forma activa y pasiva, el equilibrio estático sobre apoyo monopodal

y el tiempo hasta la respuesta de los peroneos ante una inversión repentina de tobillo. El

único parámetro que se modificó por la anestesia fue la reproducción de la posición

pasiva de movimientos. Así concluían que las sensaciones aferentes de los peroneos son

las responsables de la protección dinámica del tobillo ante la inversión repentina.

Manteniendo la funcionalidad de la musculatura del tobillo, se puede conseguir una

buena estabilidad en la articulación y mantener un buen equilibrio estático monopodal,

pese a no poseer la información propioceptiva de los ligamentos.

2.1.6.2.- Fortalecimiento muscular

Otra forma de proteger la articulación es por medio del fortalecimiento

muscular. Diversos estudios han demostrado la eficacia del fortalecimiento muscular

para prevenir los esguinces de tobillo y reducir el riesgo de lesión (Ekstrand y cols.,

1983; Tropp y cols., 1985a y 1985b; Bahr y cols., 1997; Holme y cols., 1999;

Wedderkopp y cols., 1999). La forma más habitual de fortalecer la musculatura del

tobillo es con el trabajo en disco, este método ha tenido un efecto mayor en la

reducción de esguinces de tobillo en deportistas con una historia previa de lesiones

(Tropp y cols., 1985b; Bahr y cols., 1997) aunque también está demostrada su eficacia

en deportistas con tobillos sanos (Holme y cols., 1999; Wedderkopp y cols., 1999).

En las primeras etapas del fortalecimiento muscular se recomienda el trabajo de

forma general sobre todos los músculos que atraviesan el tobillo para incrementar la

33

Page 46: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

Biomecánica del vendaje funcional de tobillo

estabilidad y se observa si hay algún tipo de descompensación, para incrementar el

trabajo sobre los músculos más débiles. Una vez se ha conseguido una buena

estabilidad, se trabaja sobre los músculos que de forma activa pueden reducir la

posibilidad de llegar a un movimiento extremo de la articulación. Para prevenir el

esguince de tobillo en su mecanismo más frecuente se deberían trabajar los peroneos

laterales largo y corto, el peroneo anterior y el extensor común de los dedos del pie.

Ekstrand y cols. (1983) en un estudio con 12 equipos de fútbol (de 15 hombres

cada uno) introdujeron de forma aleatoria un programa intensivo de prevención de

esguinces durante una temporada o un programa estándar de entrenamiento.

Encontraron que el programa intensivo de prevención de lesiones redujo la incidencia

de esguinces de tobillo a lo largo de seis meses de una temporada. En otro estudio con

jugadores de voleibol llevado a cabo por Bahr y cols. (1997) se realizó un programa de

prevención de lesiones que incluía entrenamiento en disco, y se encontró que los

esguinces de tobillo se redujeron de forma significativa, sin tener influencia sobre el

resto de lesiones.

2.1.6.3.- Soportes externos de tobillo.

Los soportes externos de tobillo hacen referencia a los vendajes funcionales

preventivos y a las ortesis. En este apartado se van a tratar principalmente las ortesis,

debido a que el siguiente va a estar dedicado íntegramente a los vendajes. Numerosos

estudios recomiendan el uso de los soportes externos de tobillo como método para

prevenir lesiones (Tabla 2.1 y Tabla 2.2). Diversos estudios han encontrado que los

deportistas que utilizan ortesis tienen una menor incidencia de lesiones en el tobillo

(Rovere y cols., 1988; Sitler y cols., 1994; Sharpe y cols., 1997; Mickel y cols., 2006).

34

Page 47: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

Estado actual de conocimientos

AUTOR SUJETOS Y SEXO EDAD Nº ORTESIS TIPO DE ORTESIS

Bennell y Goldie (1994) 24 24.8 ± 4.4 2 Swede-O y OAPL

Burks y cols. (1991) 30 - 2 Kallassy y Swede-O

Bruns y cols. (1996)σ 20 - 8 Adimed Stabil 2, Basko camp, Cliagamed, Malleocast,

Malleo-med, Mikros OV, Push ankle Brace, Talocrur

Gehlsen y cols. (1991) 10 H 23.5 ± 3.7 3 Stirrup, Active Ankle y Swede-O

Greene y Hillman (1990)σ 7 M 18-21 1 ALP (Ankle ligament protector)

Gross y cols. (1987) 9 M 2 H 18-22 1 Stirrup

Gross y cols. (1991) 8 M 8 H

M = 26.1 ± 5.1 H = 26 ± 1.6 2 Stirrup y Swede

Gross y cols. (1994b) 8 M 8 H

M = 22 ± 7.2 H = 27 ± 2 1 ALP

Heit y cols. (1996) 16 M 10 H 18.9 ± 0.8 1 Swede-O

Hopper y cols. (2005) 15 M 22.6 ± 4.2 1 Swede-O

Hubbard y Kaminski (2002) 8 M 8 H 21.6 ± 1.35 2 Swede O ankle y aircast air-stirrup

Kaminski y Gerlach (2001) 20 M 20.8 ± 2.7 1 Alimed

Lindley y cols. (1995) 11 H 21.7 ± 1.7 3 Stirrup, ALP y Active Ankle Trainer

Mackean y cols. (1995) 11 H 17-25 3 Aircast, Active Ankle y Swede-O

Martin y Harter (1993)σ 5 M

5 H 23.4 ± 2.5 2 Swede-O y Aircast

McCaw y Cerullo (1999) 5 M 9 H 21 ± 2 3 Swede-O, Aircast y Active Ankle

Metcalfe y cols. (1997) 10 M 26.5 ± 3.69 1 Swede-O-Universal

Mickel y cols (2006) 93 H - 1 AirSport Ankle Brace

Paris (1992) 18 H 17.6 ± 1.7 2 Swede-O y New Cross Mcdavid

Paris y cols. (1995) 30 H 22.0 ± 3.3 2 Swede-O y Subtalar Support-braced

Paris y Sullivan (1992) 36 H 22.3 3 Swede-O, New Cross, stirrup, subtalar stabilizer brace

Rieman y cols. (2002) 5 M 9 H 17-26 1 Aircast

Sacco y cols. (2004) 8 H 17-25 1 Aircast

Sharpe y cols. (1997) 38 19.1 1 Swede-O

Shapiro y cols. (1994) 5 H 20-65 8McDavid A-101, Stirrup, Gelcast, Super-8, Donjoy FG-062, Eclipse Excel Ankle Support, Ankle Stabilizer y

High top Ankle Support

Verbrugge (1996) 26 H 18-28 1 Air-Stirrup Brace

Tabla 2.1: Estudios sobre ortesis donde también se analizan vendajes funcionales preventivos de tobillo (M = mujeres, H = hombres; σ =estudios que encuentran reducciones en el ROM del tobillo por la utilización de las ortesis y por lo que recomiendan su uso como método para prevenir lesiones).

35

Page 48: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

Biomecánica del vendaje funcional de tobillo

AUTOR SUJETOS Y SEXO EDAD Nº ORTESIS TIPO DE ORTESIS

Alves y cols. (1992)σ 13 M

14 H 26.26 ± 4.43 4 Stirrup, ALP, Swede-O Universal, Kallassy

Carroll y cols. (1993) 6 M 25.4 1 Swede-O Universal

Cordova y cols. (1998) 24 H 23.3 ± 3.4 2 Aircast Sport-Stirrup y Active Ankle

Cordova y cols. (2000) 8 M 12 H 23.6 ± 1.7 2 Active ankle y McDavid 199

De crercq (1997)σ 7 H 23.0 ± 1.3 1 Push Brace

Eils y cols. (2002)σ 15 M

9 H 22.7 ± 2.7 10Stirrup, Gelcast, Caligamed, Air gel, Air Brace, Ligacast Anatomic, Malleoloc, Kalassy, Kalassy S, Fibulo Tape,

Dynastab

Feuerbach y Grabiner (1993) 15 H 27.3 ± 6.6 1 Aircast Air-Stirrup

Feuerbach y cols. (1994) 2 M 10 H 21-41 1 Aircast Air-Stirrup

Greene y Roland (1989)σ 15 M

15 H 18-35 1 ALP

Greene y Wight (1990)σ 12 H 18-22 3 Stirrup, ALP y Swede-O

Gribble y cols. (2004) 15 M 19.73 ± 1.28 1 ASO Ankle brace

Gross y cols. (1994a) 8 M 8 H

M = 24.6 ± 5.1 H = 20.1 ± 1.6 2 ALP y Stirrup

Gross y cols. (1997) 9 M 14 H 18-36 2 ALP y Aircast sport-stirrup

Hals y cols. (2000) 17 M 8 H 16.2 ± 6 1 Aircast sport-stirrup

Hartsell y Sapulding (1997)σ 7 - 26.3 ± 3.68 2 Swede-O y Sure-step

Hodgson y cols. (2005)σ 12 M 19.83 ± 1.7 1 Active ankle

kimura y cols. (1987)σ 10 M

8 H 18-35 1 Stirrup

Kinzey y cols. (1997) 24 H 22.7 3 Active Ankle Trainer brace, Aircast Stirrup, McDavid A-101

Kitaoka y cols. (2006) 10 M 10 H 46 3 Creadas por los investigadores

Locke y cols. (1997) 18 M 8 H 15.83 ± 1.01 1 Donjoy Rocketsoc

Lofvenberg y karrholm (1993)σ 13 - 36 1 Ortesis creada por los investigadores

Macpherson y cols. (1995) 25 H 16 2 Stirrup y Rocketsoc

Masharawi y cols. (2003)σ 18 M 20.88 ± 2.85 2 Air-Stirrup y McDavid

Papadopoulos y cols. (2005) 33 H 21.5 ± 1.5 1 Mc David

Pienkowski y cols. (1995) 12 H 15-18 3 Stirrup, kallassy y Swede-O

Santos y cols. (2004) 6 M 4 H 26.4 1 Active Ankle

Sitler y cols. (1994) 16H 19.14 ± 1.34 1 Stirrup

Venesky y cols. (2006)σ 12M

12 H 21.7 ± 2.6 1 Active Ankle Brace

Verrone y cols (2000) 17M 8 H 16.2 ± 6.0 1 Stirrup

Wiley y Nigg (1996)σ 4 M

8 H 24,2 1 Maleoloc

Yaggie y Kinzey (2001)σ 30 - 24.03 ± 0.76 2 McDavie A101 y Perform 8 Steady

Step lateral ankle stabilzer

Tabla 2.2: Estudios donde se analizan exclusivamente ortesis de tobillo (M = mujeres; H = hombres; σ =estudios que encuentran reducciones en el ROM del tobillo por la utilización de las ortesis y por lo que recomiendan su uso como método para prevenir lesiones).

36

Page 49: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

Estado actual de conocimientos

Existen numerosos tipos de ortesis. Las más simples son de tejido elástico,

neopreno u otros materiales elásticos sin componentes duros. Están diseñadas para

provocar compresión, propiocepción y calentar la zona. Sin embargo, hay otros soportes

de tobillo más elaborados, con partes semirrígidas o rígidas, cuya función es restringir

determinados movimientos (Figura 2.10).

1 2 3

5 6

4

7

Figura 2.10: Principales ortesis utilizadas en los diferentes estudios revisados (1 = Aircast Air-Stirrup, 2 = Swede-O Universal, 3 = Active Ankle, 4 = Ankle Ligament Protector, 5 = ASO, 6 = Malleoloc, 7 = DonJoy Rocketsoc; figura compuesta a partir de imágenes obtenidas con el buscador de imágenes de Google).

La gran mayoría de estudios que analizan la influencia de las ortesis en la

cinemática del tobillo, realizan mediciones del ROM activo o pasivo usando

dinamómetros isocinéticos, goniómetros o sistemas de grabación de vídeo. Gross y cols.

(1987, 1991 y 1994) estudiaron la restricción de diversos tipos de ortesis antes y

después de realizar ejercicio, en el ROM en inversión-eversión. Vieron que las ortesis

protegían a la articulación en estos movimientos sin mostrar apenas fatiga después del

37

Page 50: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

Biomecánica del vendaje funcional de tobillo

ejercicio (10 minutos de carrera trazando ochos y 20 subidas en un step). La gran

mayoría de los autores han encontrado que las ortesis restringían el ROM del tobillo

para protegerlo de determinadas lesiones (Tabla 2.1 y Tabla 2.2).

La restricción que confiere la ortesis depende, sobre todo, de la rigidez de los

materiales de confección. Carroll y cols. (1993) encontraron que una ortesis poco

rígida (Swede-O Universal) no fue efectiva en sujetos con tobillos inestables. La ortesis

pretendía restringir el ROM del tobillo en simulaciones del mecanismo de lesión por

inversión, utilizando una plataforma que provocaba de forma repentina la inversión del

tobillo. En esta misma línea, Greene y Wight (1990) encontraron que las ortesis Ankle

Ligament Protector y Aircast Air-Stirrup restringieron la movilidad del tobillo más que

la Swede-O Universal y se fatigaron menos después de 90 minutos de ejercicio (fatiga:

Swede-O Universal = 35%; Ankle Ligament Protector = 8% y Aircast Air-Stirrup =

12%).

Existe discrepancia entre los autores respecto a la influencia en el rendimiento

de las ortesis. La mayoría de ellos coinciden en que las ortesis no interfieren en el

rendimiento en tests de salto vertical y horizontal, carreras de agilidad o sprints (Tabla

2.3). Sin embargo, otros estudios demuestran su influencia negativa en el rendimiento

de estos tests (Tabla 2.3). Greene y Wight (1990) realizaron un test específico para

valorar el rendimiento que consistía en recorrer unas bases de softball y vieron, que una

de las ortesis (Aircast Air-Stirrup) redujo el rendimiento mientras que las otras dos

(Ankle Ligament Protector y Swede-O Universal) no influyeron. Robinson y cols.

(1986) construyeron unas zapatillas con soportes de plástico en los laterales para

proteger el tobillo. Analizaron el rendimiento y la restricción en el tobillo con cuatro

38

Page 51: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

Estado actual de conocimientos

materiales de diferente rigidez y tamaño. Encontraron que cuanto más rígido era el

material, menores eran los ROMs y mayor la influencia que tenían estas zapatillas en la

disminución del rendimiento.

AUTOR PRUEBAS DESCENSO RENDIMIENTO

Burks y cols. (1991) salto vertical, carrera de agilidad (9.14 m), salto horizontal y velocidad (36.58 m) SI

Greene y Hillman (1990) salto vertical NO

Gross y cols. (1994a) velocidad (40 m), carrera de agilidad (en forma de ocho) y salto vertical NO

Locke y cols. (1997) salto vertical, velocidad (24.38 m) y carrera de agilidad (12.19 m) NO

Mackean y cols. (1995) salto vertical, salto y tiro (baloncesto), velocidad y carrera submáxima SI

Macpherson y cols. (1995) salto vertical, velocidad (36.58 m) y carrera de agilidad (18.28 m) NO

Metcalfe y cols. (1997) salto vertical y test de agilidad SI

Paris (1992) velocidad (45.72 m), equilibrio, agilidad y salto vertical NO

Verbrugge (1996) velocidad (36.58 m) y salto vertical NO

Verrone y cols. (2000) carrera de agilidad (36.58 m) y salto vertical NO

Wiley y Nigg (1996) salto vertical y carrera de agilidad (en forma de ocho) NO

Yaggie y Kinzey (2001) carrera de agilidad y salto vertical NO

Tabla 2.3: Estudios que analizan la influencia de las ortesis sobre el rendimiento.

No está clara la influencia de las ortesis sobre el equilibrio y la propiocepción

del tobillo. Paris (1992) estudió la influencia de diversas ortesis (Swede-O Universal,

New Cross-Braced y McDavid-Braced) sobre el equilibrio estático y dinámico y

encontró que ninguna de ellas influyó sobre el equilibrio. Por otro lado Feuerbach y

Grabiner (1993) encontraron que la ortesis Aircast Air-Stirrup mejoró el rendimiento en

tests de equilibrio estático y dinámico en sujetos sanos, reduciendo el recorrido del

centro de presiones. Los autores justifican estas mejoras por las sensaciones

exteroceptivas y propioceptivas que provoca la ortesis. De hecho, en un estudio

posterior de estos mismos autores (Feuerbach y cols., 1993), también con sujetos sanos,

39

Page 52: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

Biomecánica del vendaje funcional de tobillo

encontraron que la ortesis mejoró la propiocepción del tobillo. Heit y cols. (1996), en un

estudio con la ortesis Swede-O Universal mostraron resultados similares a los descritos

por Feuerbach y cols. (1993). Por otro lado, Hubbard y Kamisnki (2002) encontraron

que, independientemente de que el tobillo estuviera sano o tuviera inestabilidad, el uso

de las ortesis (Swede-O Universal y Aircast Air-Stirrup) influyó de forma negativa

sobre la propiocepción del tobillo. En este mismo sentido, Bennell y Goldie (1994)

encontraron que la ortesis (Swede-O Universal) empeoró el equilibrio estático sobre

apoyo monopodal con ojos cerrados, debido a que incrementó el número de veces que el

sujeto necesitaba tocar el suelo para reequilibrarse.

Es posible que las restricciones que provocan las ortesis puedan tener, además de

efectos negativos en el rendimiento de algunas actividades, consecuencias sobre el

incremento de riesgo en nuevas lesiones (diferentes a las que pretenden evitar). Santos y

cols. (2004) encontraron que la restricción que provocaba la ortesis Active Ankle se

compensaba con un incremento de la rotación de la rodilla durante tareas en las que se

requería rotación interna de tronco. Rieman y cols. (2002) hallaron que la ortesis Aircast

Air-Stirrup adelantó la aparición de los picos de fuerza durante la amortiguación de

caídas desde 0.6 m. También durante la amortiguación de caídas McCaw y Cerullo

(1999) encontraron que algunas ortesis (Aircast Air-Stirrup, Swede-O Universal)

reducían la flexión mientras que la Active Ankle no tuvo influencia. Sacco y cols.

(2004), analizando las fuerzas de reacción verticales en saltos y amortiguaciones, vieron

que la ortesis Aircast Air-Stirrup no modificó de forma significativa las fuerzas

verticales, sin embargo, sí modificó las fuerzas medio-laterales.

40

Page 53: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

Estado actual de conocimientos

Otros estudios, también han encontrado modificaciones en algunos parámetros

de diferentes movimientos. Estos podrían tener efectos secundarios que pudieran ser

motivo de contraindicación de su uso. Se han observado incrementos en el momento de

fuerza en la rotación externa de rodilla (Venesky y cols., 2006), disminución de la

activación muscular del peroneo largo en simulaciones de inversión de tobillo (Cordova

y cols., 1998), menor activación de los gemelos y el peroneo largo durante la

amortiguación de caídas (Hopper y cols., 2005), incrementos en el primer pico de fuerza

durante la amortiguación de caídas desde 0.6 m (Hodgson y cols., 2005) y

modificaciones en el patrón cinético durante la marcha (Kitaota y cols., 2006).

Los trabajos donde se analizan las ortesis se pueden dividir en dos grandes

grupos: por un lado los estudios que analizan exclusivamente el comportamiento de las

ortesis (Tabla 2.1) y por otro los que las comparan frente a vendajes funcionales

preventivos de tobillo (Tabla 2.2). La aparición de estudios sobre ortesis es más

reciente en el tiempo que la de los vendajes. De las comparaciones que algunos

estudios hacen entre vendajes y ortesis se puede desprender que las ortesis:

1.- Se fatigan menos que los vendajes (Greene y Hillman, 1990; Gross y cols.,

1981 y 1991; Martin y Harter, 1993).

2.- Son más cómodas (Verbrugge, 1996).

3.- Son más sencillas de colocar y reajustar por el propio deportista (Hopper y

cols., 1999; Shapiro y cols., 1994).

4.- A la larga son más baratas que realizar uno o más vendajes en cada

entrenamiento y competición (Rovere y cols., 1988; Paris, 1992; Metcalfe y

cols, 1997).

41

Page 54: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

Biomecánica del vendaje funcional de tobillo

Curiosamente estos estudios comparativos en ningún caso describen las ventajas

que puedan tener los vendajes. Como por ejemplo, que por estar adheridos a la piel

pueden mejorar la acción exteroceptiva y con ello la propiocepción de la articulación

(Heit y cols, 1996) o que se realizan de forma personalizada para cada sujeto y lesión.

Así, los vendajes permiten ajustar el vector de fuerzas resultante para restringir un

movimiento en la dirección más conveniente, dependiendo de las características

antropométricas del sujeto, de la actividad que vaya a realizar y del tipo de lesión que se

pretenda prevenir.

En algunos estudios, los resultados apuntan ventajas de los vendajes frente a las

ortesis, que paradójicamente y pese a que se nombran a lo largo del estudio, finalmente

no son resaltadas en sus conclusiones y resúmenes, concluyendo que ambos métodos

muestran la misma efectividad a la hora de prevenir lesiones. Hay que destacar que

muchos de estos estudios están patrocinados por casas comerciales que fabrican

ortesis (Alves y cols. 1992; Paris, 1992; Martin y Harter, 1993; Feuerbach y cols., 1994;

Verbrugge, 1996; Wiley y Nigg, 1996) por lo que sus conclusiones deberían ser

consideradas con precaución.

Varios trabajos, curiosamente, llegan a la conclusión de que no es necesaria la

familiarización con las ortesis debido a que los resultados sobre el rendimiento después

de una semana o varios meses de utilización, fueron los mismos que el primer día en el

que se colocaron (Pienkowski y cols., 1995; Verrone y cols., 2000).

Por último, se debe tener en cuenta que las principales discrepancias en cuanto a

la influencia que las ortesis tienen sobre los ROMs, rendimiento o propiocepción viene

42

Page 55: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

Estado actual de conocimientos

condicionada por la gran variedad de soportes externos de tobillo que aparecen en el

mercado, las características (muy diferentes entre sí) y la competitividad entre las

diferentes marcas.

43

Page 56: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

Biomecánica del vendaje funcional de tobillo

2.2.- BIOMECÁNICA DEL VENDAJE FUNCIONAL PREVENTIVO

Varios estudios han resaltado en sus conclusiones la eficacia de los vendajes

funcionales preventivos de tobillo para reducir la incidencia de lesiones (Garrick y

Requa, 1973; Sharpe y cols., 1997). El estudio de Garrick y Requa llevado a cabo

durante una temporada con 2562 jugadores de baloncesto, encontró que el vendaje

redujo la incidencia de lesiones de tobillo, especialmente en sujetos que habían tenido

episodios previos de esguince de tobillo. Mickel y cols. (2006) establecen que con la

utilización del vendaje la incidencia de lesiones por participante cada 1000 exposiciones

es 0.77. Frente a los 6.40 registrados por Marshall y cols. (2002) en sujetos que no

utilizaban soportes de tobillo. Ambos estudios fueron realizados con jugadores de fútbol

americano.

La bibliografía en biomecánica sobre los vendajes funcionales preventivos se ha

centrado en cuatro temas principales, que se desarrollarán a lo largo de este apartado

(Tabla 2.4): (1) el estudio del posible descenso del rendimiento, (2) la medición de la

restricción de movimiento y fatiga del vendaje, (3) la influencia del vendaje en el

equilibrio y (4) la influencia del vendaje en la capacidad de amortiguación. Por otro

lado, encontramos revisiones bibliográficas y también trabajos en los que se aportan

hipótesis variadas sin demostrar (Hume y Gerrard, 1998; Karlsson y cols., 1993;

Passerallo y Calíbrese, 1994; Thacker y cols., 1999; Cordova y cols., 2002; Wilkerson,

2002).

44

Page 57: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

Estado actual de conocimientos

TIPO DE VENDAS AUTOR (AÑO) Nº SUJETOS SEXO EDAD CARACTERÍSTICAS SUJETOS OBJETIVO

Rarick y cols. (1962) 5 H 21-28 SANOS FATIGA + ROM

Delacerda (1978) 3 -- -- SANOS FATIGA

Laughman y cols. (1980) 20 10 M, 10 H 23 (20-45) SANOS FATIGA + ROM

Fumich y cols. (1981) 16 H -- SANOS FATIGA + ROM

Hughes y Stetts (1983) 29 17 M, 12 H -- SANOS FATIGA + ROM

Gross y cols. (1987) 11 9 M, 2 H 18-22 SANOS FATIGA + ROM

Greene y Hillman (1990) 7 M 18-21 SANOS FATIGA + ROM

Burks y cols. (1991) 30 -- -- SANOS RENDIMIENTO

Gehlsen y cols. (1991) 10 H 23.5 ± 3.7 SANOS ROM + FUERZA

Paris (1992) 25 H 17.6 ± 1.7 SANOS RENDIMIENTO

Karlsson y Andreasson (1992) 20 10 M, 10 H 24 (19-28) TOBILLO INESTABLE ROM + PROPIOCEPCION

Paris y Sullivan (1992) 36 H 22.3 ± 2.33 SANOS RENDIMIENTO

Martin y Harter (1993) 10 5 M, 5 H 23.4 ± 2.5 SANOS FATIGA

Bennell y Goldie (1994) 24 -- 24.8 ± 4.4 SANOS RENDIMIENTO + EQUILIBRIO

Shapiro y cols. (1994) 5 H 20-65 CADAVERES ROM

Lindley y kernozek (1995) 11 H 21.1 ± 1.7 SANOS ROM DINÁMICO

MacKean y cols. (1995) 11 M 17-25 SANOS RENDIMIENTO

Paris y cols. (1995) 30 H 22.0 ± 3.3 SANOS FATIGA + ROM

Robbins y cos. (1995) 24 -- 26.6 ± 2.9 SANOS PROPIOCEPCIÓN

Bruns y cols. (1996) 20 -- -- CADAVERES sin lesiones ROM

Heit y cols. (1996) 26 16 M, 10 H 18.9 ± 0.8 SANOS RENDIMIENTO

Verbrugge (1996) 26 H 20.3 SANOS RENDIMIENTO

Metcalfe y cols. (1997) 10 M 26.5 ± 3.69 SANOS RENDIMIENTO + ROM

Sharpe y cols. (1997) 38 -- 19.1 ESGUINCES PREVIOS NUEVAS LESIONES

McCaw y Cerullo (1998) 14 5 M, 9 H M (20 ± 1), H (21 ± 2) SANOS CAÍDAS

Hopper y cols. (1999) 15 M 22.6 ± 4.2 SANOS CAÍDAS

Lohrer y cols. (1999) 40 22 M, 18 H 23.6 SANOS FATIGA + ROM

Refshauge y cols. (1999) 43 -- 18-41 25 INESTABLE 18 SANOS RENDIMIENTO

Alt y cols. (1999) 12 5 M, 7 H M (22.4), H (24.1) SANOS FATIGA

Allison y cols. (1999) 31 -- 26 SANOS RESPUESTA PERONEOS

Kaminski y Gerlach (2001) 20 M 20,8 ± 2,7 SANOS PROPIOCEPCIÓN

Hubbard y Kaminski (2002) 16 8 M, 8 H 21.6 ± 1.7 TOBILLO INESTABLE PROPIOCEPCIÓN

Riemann y cols. (2002) 14 5 M, 9 H 17-26 SANOS CAÍDAS

Yi y cols. (2003) 14 10 M, 4 H M (23.8 ± 2.0), H (25.7 ± 2.0) SANOS CAÍDAS

Sacco y cols. (2004) 8 -- 17-25 SANOS RENDIMIENTO

Meana y cols. (2007) 15 H -- SANOS ROM + FATIGA

Wilkerson (1991) 30 H -- SANOS FATIGA

Gross y cols. (1991) 16 8 M, 8 H M (26.0 ± 3.8), H (26.1 ± 4.7) SANOS FATIGA

Gross y cols. (1994) 16 8 M, 8 H M (22 ± 2), H (27 ± 7) SANOS RENDIMIENTO + FATIGA

De Clercq (1997) 7 H 23.0 ± 1.3 SANOS ROM + NUEVAS LESIONES

Barceló (2004) 16 6 M, 10 H 18-24 SANOS RENDIMIENTO + CAÍDAS

Combinación

No elásticas

Tabla 2.4: Trabajos que estudian los vendajes funcionales preventivos de tobillo (M = mujeres; H = hombres).

45

Page 58: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

Biomecánica del vendaje funcional de tobillo

2.2.1.- Indicaciones, limitaciones y efectos secundarios

En los deportes colectivos, el uso de los vendajes es una práctica habitual y en

ocasiones obligada (Meana, 2002). En la élite deportiva, este hecho se ve reforzado por

convenios que algunos clubes tienen con casas comerciales, para proteger las

inversiones que han realizado, minimizando el riesgo de que un jugador quede

lesionado a mitad de temporada (Bové, 2005). Así, Camacho (2005) relata que en la

NBA es algo muy frecuente. La utilización de vendajes por los grandes jugadores ha

hecho que esta práctica se extienda hacia otros estratos del deporte y jugadores de

menor nivel que tratan de imitar a las grandes estrellas, popularizando el uso y, a veces,

abuso de estos métodos preventivos.

Como hemos comentado anteriormente, en ocasiones, en vez de los vendajes

funcionales preventivos, se usan otros métodos de sujeción como son las ortesis. Éstas

últimas son más sencillas y menos costosas, tanto a nivel económico como de tiempo

(Rovere y cols., 1988; Paris, 1992; Metcalfe y cols., 1997; Hopper y cols., 1999;

Shapiro y cols., 1994). Aún así, debemos tener en cuenta como ventajas de los vendajes

funcionales que son personalizados y que se crean para la ocasión y para una persona

determinada, mientras que las ortesis son impersonales, no tienen en cuenta las

características individuales de los sujetos y a veces poseen elementos rígidos que

impiden su utilización en competición.

Los beneficios de la correcta utilización de los vendajes están más que

demostrados. Garrick and Requa (1973) observaron que los vendajes reducían la

incidencia de lesiones, registrando 14.7 esguinces cada 1000 participantes frente a los

32.8 esguinces cada 1000 participantes que se obtuvieron en los sujetos que no llevaban

46

Page 59: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

Estado actual de conocimientos

vendaje. En este mismo sentido Sharpe y cols. (1997) encontraron que el porcentaje de

esguinces de tobillo, en jugadores con tobillos inestables, se redujo de un 35% en los

sujetos que no utilizaban vendaje a un 25% en los sujetos que lo utilizaban.

Sin embargo cuando el uso no es el indicado, pueden darse una serie de “efectos

secundarios” que vamos a describir a continuación. Neiger (1990) dice que hay que

desconfiar de la colocación sistemática y repetitiva de los vendajes, debido a la

dependencia que pueden provocar en el sujeto y llevarle a que esté expuesto a una

lesión en el momento en que no esté protegido. Por este motivo, hay diversos autores

que sugieren que en la rehabilitación de lesiones sería adecuado combinar la utilización

del vendaje con sesiones específicas de propiocepción, que ayuden al sujeto a

conseguir un control activo articular y neuromuscular, para que el periodo de uso del

vendaje sea limitado (Neiger, 1990; Hume y Gerrard, 1998; Villarroya y cols., 1999).

Después de la utilización del vendaje funcional preventivo, la zona donde ha

sido colocado podría quedar expuesta a un mayor riesgo de lesión. En los estudios en

que se mide el ROM una vez retirado el vendaje, se encuentran valores superiores con

respecto a cuando no se utiliza. Esto conlleva que las estructuras de esa zona se han

“acostumbrado” a la ayuda del vendaje y una vez retirado les cuesta más volver a

realizar su función (Neiger, 1990). Algunos autores achacan la mayor laxitud de la zona

donde se encuentra el vendaje a un aumento de la temperatura y por lo tanto un

aumento también en la extensibilidad de las estructuras que se encontraban bajo el

vendaje (Alt y cols., 1999). Estos autores registran incrementos en la temperatura de

hasta 2.6 ºC superiores en el grupo con vendaje funcional preventivo con respecto a un

grupo control después de realizar ejercicios variados que incluían saltos.

47

Page 60: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

Biomecánica del vendaje funcional de tobillo

Otro factor a tener en cuenta es la piel que se encuentra en contacto con el

vendaje. En ella se pueden dar efectos como la hipersensibilidad (reacciones a

determinados componentes del vendaje), las irritaciones mecánicas causadas por

fuerzas de tracción altas y las irritaciones químicas, producidas por las sustancias que

contiene la masa adhesiva (Jurgen y Asmussen, 1998).

Cuando se realiza un vendaje, se deben considerar algunos factores que a veces

no se tienen en cuenta, como son: la capa protectora de la piel (que se encuentra

formada por ácidos grasos, las escamas y los pelos) y la actividad que se va a realizar.

Jurgen y Asmussen (1998) apuntan que el sudor puede influir de forma significativa

sobre el efecto del vendaje y su utilidad. El vendaje puede levantarse y perder su

eficacia, incluso limitar algún movimiento diferente al que se pretendía y llegar a

sobrecargar otras estructuras pudiendo provocar una lesión. El vendaje funcional

preventivo, al limitar el ROM puede llevar a la necesidad de compensar con la

utilización de otras estructuras que a largo plazo provoque dolor o actitudes viciosas.

2.2.2.- Acciones del vendaje

Con el uso de los vendajes funcionales preventivos podemos conseguir

principalmente cuatro acciones. El vendaje permite limitar mecánicamente la

movilidad de una articulación para proteger las estructuras periarticulares de un

sobreestiramiento. Los vendajes actúan también sobre la sensibilidad exteroceptiva y

propioceptiva, por las solicitaciones que efectúan sobre los mecanorreceptores

cutáneos, articulares y miotendinosos, debido a la presión y por encontrarse en contacto

directo con la piel. Finalmente, su eficacia también se ha asociado a un factor

psicológico debido a la seguridad, confianza y confort que proporcionan a los

48

Page 61: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

Estado actual de conocimientos

deportistas (Hume y Gerrard, 1998, Neiger, 1990). A continuación se van a desarrollar

de forma escueta cada una de estas acciones.

2.2.2.1.- Mecánica

La eficacia de todo vendaje funcional reposa sobre la propiedad mecánica de

sustitución de la acción de las estructuras periarticulares, para conseguir estabilidad

articular y protección frente a la reproducción del mecanismo lesional, sin sacrificar el

aspecto funcional de libertad de movimiento. La eficacia del vendaje para restringir un

movimiento depende principalmente del material utilizado, de la dirección en la

colocación de las tiras, del número de tiras activas utilizadas, de los anclajes y del uso o

no de prevendaje. La acción mecánica está condicionada por la intensidad de las

solicitaciones y del tiempo durante el cual el vendaje inicial permanece colocado sin ser

reforzado o sustituido.

Hay consenso en los investigadores para aceptar la acción mecánica que los

vendajes tienen en restringir determinados movimientos. Malean (1989) propone que el

vendaje adhesivo puede actuar como un ligamento secundario (exoligamento) para

evitar que los movimientos lleguen a los extremos fisiológicos. Según este autor, la

interacción entre el vendaje y la piel no soportaría la fuerza necesaria para evitar los

movimientos que producen las lesiones en los ligamentos del tobillo, pero sí una

combinación de la fuerza que produce el vendaje junto a la que generan las estructuras

corporales que protegen la articulación.

Andreasson y Edberg (1983) hallaron que las vendas no elásticas soportaban una

fuerza de 75 N/cm de ancho. Esto nos indicaría que una venda de 2.5 cm soportaba una

49

Page 62: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

Biomecánica del vendaje funcional de tobillo

fuerza aproximada de 187 N, valor parecido al registrado en ensayos realizados en

nuestro Laboratorio de Biomecánica Humana y Deportiva de la Universidad de Castilla-

La Mancha (215 N). Estos valores son inferiores a los encontrados en ligamentos

laterales del tobillo, que oscilan desde los 297 N que soporta el peroneoastragalino

anterior hasta los 598 N del peroneocalcáneo (Funk y cols., 2000). Ésta es la causa de

que algunos autores opinen que el mecanismo pueda no ser puramente mecánico ya que,

en tal caso el vendaje debería soportar mayor fuerza que el ligamento (St Pierre y cols.,

1983). Sin embargo, hay que tener en cuenta que en un vendaje funcional preventivo

hay varias vendas activas que ejercen una acción sumativa para restringir el

movimiento. Además, la fuerza que confieren las vendas activas se une a la acción de

los ligamentos y músculos para proteger la articulación, provocando una acción

mecánica de restricción de movimiento igual a la suma de todas las fuerzas que se

oponen al movimiento lesional. La acción mecánica es, posiblemente, la principal causa

del descenso en la incidencia de lesiones por la utilización de los vendajes.

2.2.2.2.- Exteroceptiva

Es una característica propia de los vendajes funcionales, cuyas tiras traccionan

del plano cutáneo, lo cual permite según Neiger (1990):

− Aumentar el flujo aferente exteroceptivo.

− Reforzar de forma intensa las informaciones de origen cutáneo, para una zona

localizada, cuando se reproduce el mecanismo lesional.

− Facilitar la actividad muscular subyacente, protectora de la recidiva lesional.

La acción exteroceptiva depende, en gran medida, de la calidad de la

adherencia de las vendas al plano cutáneo. Por lo que cuando las tiras se ponen en

50

Page 63: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

Estado actual de conocimientos

tensión y tiran de forma importante sobre la piel actúan como una señal de alarma que

provoca una corrección de la posición. En este sentido cobra importancia la utilización

del prevendaje exclusivamente en las zonas que haya que proteger de la fricción, para

reducir lo menos posible la acción exteroceptiva.

2.2.2.3.- Propioceptiva

La acción propioceptiva sucede cuando el vendaje provoca una tensión

muscular, tendinosa o capsular que ocasiona un aumento del tono muscular de base y

que puede mejorar la atención del sujeto (Neiger, 1990). Por lo tanto, el sujeto se haría

consciente de los movimientos que realiza su articulación aumentando el control de la

misma, sobre todo, debido a la acción compresiva del vendaje. Firer (1990) comenta

que no todo el efecto que produce el vendaje es puramente mecánico sino que hay otros

mecanismos que también colaboran para la protección del tobillo, entre los que destaca

la acción propioceptiva.

2.2.2.4.- Psicológica

El uso del vendaje da confianza al sujeto, incluso en situaciones en las que se

ponen en duda el resto de acciones. Los vendajes funcionales dan sensaciones de

comodidad y estabilidad, ligadas a los efectos mecánicos, exteroceptivos y

propioceptivos. Según Neiger (1990) la práctica terapéutica demuestra que en ciertos

lesionados se instaura un “acostumbrarse al vendaje”. Esta dependencia encontrada

en los deportistas impone la necesidad de suprimir el vendaje cuando no sea necesaria la

utilización. Por otro lado, en ciertos deportes, es posible colocar de forma sistemática un

vendaje funcional con fin preventivo durante las competiciones o entrenamientos. Éste

debe ser, siempre que sea posible, completado con sesiones de reforzamiento muscular

51

Page 64: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

Biomecánica del vendaje funcional de tobillo

y propioceptivo, para evitar una disminución del control activo de la articulación

cuando no se encuentra protegida por el vendaje.

Bleak y Frederick (1998), analizaron los comportamientos supersticiosos de 107

deportistas de fútbol americano, gimnasia y atletismo. Un 39% de los jugadores de

fútbol americano se vendaban pese a no estar lesionados y de los diez rituales más

utilizados en este deporte, era el que se percibía como más efectivo.

2.2.3.- Restricción y fatiga

La movilidad del tobillo puede ser medida de forma estática o dinámica dentro

de un movimiento seleccionado, obteniendo valores diferentes en ambas situaciones.

Medir el ROM de forma estática es relativamente sencillo con un goniómetro. Sin

embargo, hacerlo de forma dinámica durante la práctica deportiva es complejo, puede

interferir en la propia práctica y son necesarios instrumentos más sofisticados, como es

el caso de las cámaras de alta velocidad o electrogoniómetros.

En diversos estudios se ha comprobado la acción mecánica de los vendajes

mediante la restricción del ROM, sobre todo, en los movimientos de inversión y

extensión, debido a que una combinación de ambos se relaciona con el mecanismo más

habitual de lesión del tobillo (Tabla 2.5). Los autores coinciden en que una vez colocado

el vendaje, el ROM del tobillo se reduce, por lo que el tobillo queda protegido de

movimientos extremos. Alt y cols. (1999) compararon dos tipos de material (ambos no

elásticos pero de diferentes casas comerciales) y dos técnicas (una estándar y otra más

corta). Con ambas técnicas se redujo de forma significativa el ROM del tobillo durante

52

Page 65: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

Estado actual de conocimientos

inversiones repentinas, con la estándar un 42 y un 41% dependiendo del material y con

la corta un 27 y un 30%.

53

Page 66: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

Biomecánica del vendaje funcional de tobillo

AUTOR (AÑO) MOVIMIENTO SIN VENDAJE ANTES DEL EJERCICIO SIG DESPUÉS DEL

EJERCICIO SIG TIEMPO PARA FATIGA

inversión 29.01 ± 29.58 18.29 ± 2.46 ** 26.17 ± 3.67 ns

extensión 44.12 ± 4.03 29.21 ± 3.65 ** 42.04 ± 5.80 **

inversión 30.60 19.00 24.25

eversión 24.18 19.00 20.80

flexión 24.40 18.60 23.40

extensión 45.50 31.50 38.30

inversión 53.37 ± 11.19 35.20 ± 12.08 * 40.40 ± 12.07 *

eversión 43.52 ± 11.00 36.65 ± 9.19 * 35.00 ± 8.69 ns

inversión 77.89 ± 9.09 42.2 ± 3.98 ** 75.54 ± 8.45 **

eversión 52.82 ± 5.96 35.05 ± 3.60 ** 50.71 ± 5.67 **

total 130.71 ± 12.24 77.25 ± 6.71 ** 126.25 ± 11.69 **

extensión 38.6 ± 6.1 32.6 ± 7.6 *

flexión 12.7 ± 4.9 9.7 ± 3.9 *

inversion (tecnica estándar) 44.63 ± 5.94 26.10 ± 5.14 *** 37.90 ± 5.94 ***

inversión (técnica modificada) 44.50 ± 6.24 23.33 ± 4.92 *** 34.07 ± 5.63 ***

extensión (técnica estándar) 39.83 ± 4.59 24.03 ± 5.18 *** 31.37 ± 5.87 ***

extensión (técncia modificada) 39.87 ± 4.49 15.97 ± 4.39 *** 23.33 ± 5.89 ***

inversión caminando a 6.4 km/h 15.0 ± 4.8 10.7 ± 2.1 * 14.8 ± 2.9 **

inversión caminando a 14.5 km/h 18.1 ± 5.3 12.0 ± 4.2 *** 15.4 ± 6.5 *

inversión 59.5 ± 14.7 48.7 ± 12.6 * 54.0 ± 12.4 *

eversión 56.5 ± 7.4 42.3 ± 7.7 * 46.0 ± 8.5 ns

pronación 47.84 ± 12.43 39.13 ± 10.08 * 43.54 ± 10.89 *

supinación 51.91 ± 10.49 34.66 ± 10.67 * 39.36 ± 10.31 *

rotación interna 20.2 ± 4.5 15.1 *

rotación externa 18.75 ± 6.74 14.6 *

extensión 36.2 ± 6.52 23.6 *

flexión 29.45 ± 6.1 23.2 *

inversión 41.5 ± 8.2 28.7 ± 6.9 *** 35.2 ± 8.0 ***

eversión 36.1 ± 7.3 24.8 ± 6.3 *** 29.3 ± 6.4 ***

extensión 45.0 ± 7.0 25.6 ± 5.9 *** 32.5 ± 5.6 ***

flexión 24.9 ± 10 18.6 ± 8.3 *** 20.2 ± 7.7 **

extensión 42.10 ± 5.16 36.57 ± 3.68 ns

flexión 51.97 ± 5.07 43.35 ± 5.05 *

inversión 34.05 ± 11.48 26.43 ± 9.94 *

eversión 14.63 ± 2.15 12.20 ± 1.46 *

inversión 22 ± 7 11 ± 4 ** 14 ± 5 **

eversión 7 ± 2 7 ± 3 ns 6 ± 4 ns

extensión 52 ± 9 33 ± 10 *** 50 ± 17 ***

flexión 24 ± 8 16 ± 6 - 13 ± 7 -

inversión 28.3 ± 6.3 10.1 ± 5.4 *** 19.1 ± 5.8 ***

eversión 14.7 ± 3.5 6.0 ± 3.3 *** 10.1 ± 2.6 *

extensión 64.7 ± 6.6 26.5 ± 8.0 *** 44.7 ± 11.3 ***

flexión 19.6 ± 5.9 9.9 ± 6.8 *** 14.6 ± 6.6 ***

120 min

180 min

aprox 20 min

20 min

180 min (fútbol americano)

180 min (fútbol americano)

aprox 20 min

aprox 20 min

20 min

30 min

Greene y Hillman (1990)

Meana y cols. (2008)

Gross y cols. (1994)

Gehlsen y cols. (1991)

Martin y Harter (1993)

Metcalfe y cols. (1997)

Lohrer y cols. (1999) 20 min

60 min

Delacerda (1978)

Gross y cols. (1994)

Paris y cols. (1995)

Fumich y cols. (1981)

Bruns y cols. (1995)

Wilkerson (1991)

Gross y cols. (1987)

Tabla 2.5: Estudios que analizan la restricción del movimiento y la fatiga de los vendajes funcionales preventivos de tobillo (SIG = significación estadística; ns = no significativa; * = p<0.05; ** = p<0.01; *** = p<0.001).

54

Page 67: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

Estado actual de conocimientos

Se han encontrado diferencias entre la medición de la restricción pasiva del tobillo

en reposo (medición estática pasiva) y de forma activa (medición dinámica) durante una

acción deportiva (Meana y cols., 2008). En mediciones dinámicas ha habido resultados

diversos en cuanto a la restricción que provocan los vendajes. Meana y cols. (2008)

analizaron el ROM del tobillo durante un cambio de dirección y observaron que

solamente había diferencias por la utilización del vendaje en la inversión durante la fase

de frenado. Martin y Harter (1993) mostraron que el vendaje restringía el ROM

dinámico del tobillo durante la marcha (6.5 km/h) y la carrera (14.5 km/h). En esta

misma línea, Laughman y cols. (1980) observaron que los vendajes limitaban el ROM

en algunas fases de la marcha (caminando a 4.5 km/h). Por otro lado, Lindley y

Kernozek (1995) encontraron que el vendaje no modificaba el ROM en flexión plantar y

dorsal del tobillo durante sprints de 36.56 m, por lo que recomendaban el uso de los

vendajes funcionales cuando fuera necesario, debido a que no modificaban la eficacia

durante la carrera.

La fatiga del vendaje o pérdida de las propiedades mecánicas durante su uso es

otro aspecto que ha sido ampliamente estudiado. La mayoría de los autores coinciden en

que el vendaje se fatiga como cualquier otro material y que con el tiempo pierde parte

de las propiedades para las que ha sido confeccionado, reflejándose en cambios en el

ROM (Tabla 2.5). Diversos estudios establecen la barrera a partir de la cual el vendaje

pierde gran parte de sus propiedades mecánicas en los 20 minutos de ejercicio y por lo

tanto debería reforzarse o sustituirse cada cierto tiempo (Greene y Hillman, 1990, Gross

y cols. 1994 Hume y Gerard, 1998). Rarick y cols. (1962) y Metcalfe y cols. (1997)

encontraron que la mayor fatiga del vendaje se producía en los primeros 10 minutos de

ejercicio.

55

Page 68: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

Biomecánica del vendaje funcional de tobillo

Meana y cols. (2008) observaron que el vendaje se fatigó en torno al 48%

después de 30 minutos de ejercicio intenso, midiendo la restricción pasiva en reposo

mediante un goniómetro manual. Sin embargo, estos mismos autores también midieron

el ROM del tobillo de forma dinámica durante un cambio de dirección, y vieron que la

restricción inicial en la inversión desaparecía después de los 30 minutos de ejercicio.

Por otro lado, Martin y Harter (1993) encontraron que después de 20 minutos de

ejercicio intenso el vendaje seguía manteniendo parte de la restricción en el tobillo al

analizar la marcha y la carrera.

Greene y Hillman (1990), en un estudio realizado con un equipo de voleibol,

encontraron que después de 20 minutos de ejercicio el vendaje había perdido gran parte

de la restricción inicial que poseía. Después de 180 minutos de práctica deportiva el

vendaje había pasado de restringir el 41% a tan solo restringir el 15% de la movilidad

inicial. En un estudio similar pero con un equipo de fútbol, Fumich y cols. (1981)

observaron que la restricción del ROM se redujo desde el 30% hasta el 15% después de

tres horas de practicar fútbol americano y Myburgh y cols. (1984) registraron una fatiga

del vendaje desde una restricción inicial del 30% al 10% después de una hora de

practicar squash.

En la fatiga del vendaje funcional preventivo influyen algunas características

individuales, como es el caso del tipo de pie o la altura. Los sujetos altos de pies cavos

los desgastan en mayor medida que los bajos de pies planos (Meana, 2002) por lo que

deberían reconstruirlo con mayor frecuencia. También ha sido estudiada la influencia

del prevendaje en la fatiga del vendaje. Al contrario de lo que cabría esperar, se registró

una menor fatiga del vendaje después de dos horas de ejercicio con el uso de prevendaje

56

Page 69: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

Estado actual de conocimientos

que cuando se colocaba directamente sobre la piel (Delacerda, 1978). Los resultados de

Delacerda podrían obedecer a que el prevendaje, al separar la piel del vendaje, además

de evitar las acciones exteroceptivas y propioceptivas, también limitaría la acción

mecánica de restricción y por ello es lógico que al estar menos sometido a tracciones, se

fatigara menos.

2.2.4.- Pérdida de eficacia

La influencia que el vendaje funcional preventivo puede tener sobre el

rendimiento es un aspecto fundamental para considerar su utilización en la

competición. Aunque el vendaje puede prevenir lesiones, muchos deportistas piensan

que desciende el rendimiento, lo que hace que sean reticentes a su utilización, pese a la

protección que provoca (Pienkowski y cols., 1995).

Hay discrepancia entre los autores que analizan la influencia que tiene el

vendaje sobre el rendimiento (Tabla 2.6). Estos trabajos se centran principalmente en el

estudio de su posible descenso, como por ejemplo, en la capacidad de salto o en el

tiempo en realizar un determinado circuito. Unos estudios encuentran que los vendajes

no influyen sobre el rendimiento mientras que otros observan un efecto adverso.

Ninguno de los trabajos muestra una mejora del rendimiento con la utilización de los

vendajes, pese a que en un estudio cualitativo realizado por Hunt y Short (2006), un

34.2% de los sujetos entrevistados afirmaban que el vendaje les ayudaba a mejorar el

rendimiento (contrariamente a lo expuesto por Pienkowski y cols. (1995)).

57

Page 70: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

Biomecánica del vendaje funcional de tobillo

AUTOR (AÑO) PRUEBA (VARIABLE) % DESCENSO RENDIMIENTO SIG

Salto vertical (altura) 4.0 *

10 yardas carrera lanzada (tiempo) 1.6 *

40 yardas sprint (tiempo) 3.5 *

Salto horizontal (longitud) - ns

50 yardas (velocidad) 0.2 ns

Nelson Test de equilibrio (tiempo) 3.1 ns

Test de agilidad SEMO (tiempo) 1.6 ns

Salto vertical (altura) 2.4 ns

Fuerza inversión (promedio) 6.9 ns

Fuerza inversión (pico) 7.7 ns

Fuerza eversión (promedio) 1.6 *

Fuerza eversión (pico) 4.0 *

Equilibrio (fuerzas mediolaterales) 42.9 *

Tocar el suelo (número de veces) 536.4 *

Salto vertical (altura) 1.6 *

Lanzamiento en salto (distancia) 9.1 ns

Recorrer distancias cortas (tiempo) 2.9 ns

40 yardas sprint (tiempo) 0.2 ns

Salto vertical (altura) 2.9 ns

Carrera de agilidad (tiempo) - ns

Salto vertical (altura) 4.6 ***

Test de agilidad SEMO (tiempo) 2.7 ***

Amortiguación máxima (2º pico fuerza) 2.6 ns

Amortiguación rígida (2º pico fuerza) 14.9 ns

Vendaje 1: salto vertical (altura) - ns

Vendaje 1: tiempo en realizar un circuito (s) - ns

Vendaje 2: salto vertical (altura) - ns

Vendaje 2: tiempo en realizar un circuito (s) - ***

Tiempo en realizar un circuito (s) 1.9 ns

Tiempo en realizar una finta (s) 2.4 nsMeana y cols. (2005)

Barceló (2004)

Rieman y cols. (2002)

Burks y cols. (1991)

Bennell y Goldie (1994)

Paris (1992)

Metcalfe y cols. (1997)

Mackean y cols. (1995)

Paris and Sullivan (1992)

Verbrugge (1996)

Tabla 2.6: Estudios sobre los posibles descensos del rendimiento con la utilización del vendaje funcional de tobillo. (SIG = Significación estadística; ns = no significativa; * = p<0.05; *** = p<0.001).

58

Page 71: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

Estado actual de conocimientos

2.2.5.- Influencia del vendaje en el equilibrio

Los estudios de equilibrios utilizan el recorrido del centro de presiones para

evaluar el rendimiento en los tests. Un recorrido menor, o menor área de barrido, indica

un mejor resultado (Feuerbach y Grabiner, 1993; Friden y cols., 1989; Hertel y cols.,

1996; Kinzey y cols., 1997). Menores valores en el equilibrio y control postural se han

relacionado con un incremento en el riesgo de lesión del tobillo (Tropp y cols., 1984).

Sin embargo, hay autores que utilizaban técnicas más rudimentarias y menos precisas en

la evaluación, cómo contar las veces que el sujeto necesitaba reequilibrarse (Bennell y

Goldie, 1994) o contar el tiempo que el sujeto permanecía sobre una barra fija (Paris,

1992).

Hay controversia respecto al efecto del vendaje funcional preventivo de tobillo

sobre el rendimiento en tests de equilibrio. Paris (1992) no encontró diferencias con y

sin vendaje al realizar tests de equilibrio estático y dinámico. Sin embargo, Bennell y

Goldie (1994) concluían que el vendaje afectaba de forma adversa al control postural,

en un test de apoyo monopodal con los ojos cerrados y las manos en la cintura, debido a

un incremento en las fuerzas medio-laterales y en la frecuencia de tocar el suelo para

reequilibrarse con el vendaje. Aunque estos resultados podrían sugerir que el vendaje

tuvo un efecto adverso sobre el control postural, se debe tener precaución al

interpretarlos, ya que las variables que se tuvieron en cuenta en este estudio no son las

más habituales ni las más representativas de los estudios de equilibrio. Feuerbach y

Grabiner (1993) observaron que el uso de la ortesis Aircast Air-Stirrup mejoró el

control postural por una reducción de algunas componentes del recorrido del centro de

presiones. Esto nos lleva a pensar que los vendajes funcionales, que tienen una mayor

acción exteroceptiva y propioceptiva por estar adheridos a la piel y traccionar de la

59

Page 72: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

Biomecánica del vendaje funcional de tobillo

misma, también podrían tener una influencia positiva sobre el control postural al

analizar este tipo de variables.

2.2.6.- Influencia del vendaje en la capacidad de amortiguación

En este apartado se van a describir las características generales de las

amortiguaciones de caídas, sus principales riesgos y, por último, cómo influyen los

vendajes en estos movimientos.

2.2.6.1.- Características generales de las amortiguaciones de caídas

Los aterrizajes de caídas tienen importancia por el riesgo de lesión que conllevan

y algunos autores los sitúan como la principal causa de lesión en determinados deportes

(Ozgüven y cols., 1988). Por ejemplo, en baloncesto y voleibol, entre el 58% y el 63%

de las lesiones se producen durante los aterrizajes de los saltos (Henry y cols., 1982;

Zelisco y cols., 1982; Gray y cols., 1985; Richie y cols., 1985; Gerberich y cols., 1987).

Se pueden dar dos formas diferentes de caer que han sido ampliamente

estudiadas. Variantes con un pie (Hargrave y cols., 2003; Chaudhari y cols., 2005;

Zazulak y cols., 2005) y con dos pies a la vez (Zhang y cols., 2000; Bauer y cols.,

2001; Self y cols., 2001; Cowling y cols., 2003; Pflum y cols., 2004; Chappell y cols.,

2005; Hewett y cols., 2005; Kernozek y cols., 2005). Los aterrizajes tocando el suelo

con los dos pies a la vez son frecuentes en muchos deportes, por ejemplo Tillman y

cols. (2004), en un estudio con cuatro equipos de voleibol femenino mostraron que el

56% de los aterrizajes durante un partido se daban cayendo con los dos pies a la vez,

mientras que el resto se realizaba cayendo con un solo pie (en torno al 30% el derecho y

al 15% el izquierdo).

60

Page 73: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

Estado actual de conocimientos

Gracias a las plataformas de fuerzas, cámaras de alta velocidad,

electrogoniómetros y registros electromiográficos entre otros, hoy en día empieza a

conocerse la biomecánica del aterrizaje de las caídas. Si analizamos las fuerzas de

reacción en un aterrizaje con los dos pies a la vez, encontramos una gráfica similar a la

que se puede apreciar en la Figura 2.11. Se dan dos picos de fuerza que suceden en los

primeros 40 ms. El primero (F1), algo inferior, se relaciona con la llegada al suelo de las

cabezas de los metatarsos (Figura 2.12). El segundo (F2), que en ocasiones puede

superar las 10 veces el peso corporal (Body Weights = BW), está relacionado con la

llegada al suelo del talón (Figura 2.12). Los instantes en los que aparecen estos picos

corresponden a momentos en los que las fuerzas de reacción del suelo son transmitidas a

lo largo de las estructuras anatómicas por todo el cuerpo. Un tercer pico (F3), de mucho

menor nivel (unas 2 BW), suele aparecer cerca de los 150 ms y guarda relación con el

ángulo máximo de flexión de tobillos e inicio del levantamiento de los talones del suelo,

mientras las rodillas siguen flexionándose.

61

Page 74: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

Biomecánica del vendaje funcional de tobillo

FUERZAS DE REACCIÓN EN LA AMORTIGUACIÓN DE LA CAÍDA

0

2

4

6

8

0 35 70 105 140 175 210 245Tiempo (ms)

Fuer

za V

ertic

al (B

W) F1

F2

F3

FIGURA 2.11: Gráfica representativa de las fuerzas de reacción verticales en la amortiguación de una caída desde 0.75 m. La gráfica se ha obtenido con una plataforma de fuerzas piezoeléctrica Kistler 9281 C. (F1 = primer pico de fuerza; F2 = segundo pico de fuerza; F3 = tercer pico de fuerza).

FIGURA 2.12: Instantes en los que suceden los dos primeros picos de fuerza en la amortiguación de una caída desde 0.75 m. El primer pico relaciona con el impacto de las cabezas de los metatarsos (izquierda) y el segundo con el impacto del talón (derecha). Las imágenes han sido obtenidas a 1000 Hz con una cámara de alta velocidad, Redlake MotionScope M1, sincronizada con una plataforma de fuerzas, en ensayos realizados en el Laboratorio de Biomecánica Humana y Deportiva de la Universidad de Castilla-La Mancha.

62

Page 75: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

Estado actual de conocimientos

2.2.6.2.- Riesgo de lesión en las amortiguaciones

En la bibliografía se apoya la idea de que la forma en que el sujeto absorbe la

energía durante la amortiguación de la caída de un salto va a condicionar que ésta sea

más o menos peligrosa (McNitt-Gray, 1991; McNitt-Gray, 1993; McNair y cols., 2000;

Onate y cols., 2001; Cowling y cols., 2003; James y cols., 2003; Devan y cols., 2004;

Tillman y cols., 2004). Este hecho es importante, porque resalta la capacidad que tiene

el ser humano de protegerse activamente (mediante una técnica adecuada) del riesgo

implícito de lesión en las caídas. Así, algunos autores incluso llegan a realizar

intervenciones en el marco escolar para evaluar hasta qué punto se puede disminuir el

riesgo de lesión después de un aprendizaje técnico (Pittenger y cols., 2002; Prapaverssis

y cols., 2003; McKay y cols., 2005).

Las intervenciones profilácticas han empezado a estudiarse por autores como

McNair y cols. (2000), Onate y cols. (2001), Prapavessis y cols. (2003) y Mckay y cols.

(2005). Onate y cols. (2001), en un estudio realizado con 63 sujetos, encontraron que el

grupo al que le aportaban feedback reducía los picos de fuerza vertical de una forma

significativa. Prapavessis y cols. (2003), en una investigación realizada con 61 niños

(con una edad media de nueve años) que caían desde una altura de 0.3 m, encontraron

reducción del pico de fuerza vertical en el grupo que recibía instrucciones. Cowling y

cols. (2003) concluyen que ciertas instrucciones de activación muscular, previas a una

amortiguación, no reducen el riesgo de lesión del ligamento cruzado anterior (ACL).

Las lesiones de cruzado anterior son más frecuentes en mujeres que en hombres y en

ellas el mecanismo de lesión guarda relación con la activación electromiográfica de los

músculos agonistas y antagonistas de las extremidades inferiores en los aterrizajes.

63

Page 76: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

Biomecánica del vendaje funcional de tobillo

También han sido estudiados otros aspectos de las caídas como es la influencia

de la fatiga en la amortiguación o los mecanismos de lesión en los aterrizajes. Madigan

y cols. (2003) encontraron un descenso significativo del 12% en F2 después de fatigar

los músculos de las extremidades inferiores por medio de series que combinaban dos

amortiguaciones y tres sentadillas. No obstante, no hemos encontrado en la bibliografía

estudios donde se fatigue a los músculos con otros tipos de ejercicios diferentes.

Gruneberg y cols. (2003), forzando el tobillo en una caída sobre un plano inclinado,

encontraron que se activaban en mayor medida los peroneos, mientras que en las

amortiguaciones sobre planos horizontales era el tríceps sural el que poseía mayores

valores. Hay que tener en cuenta que en algunos deportes, como el baloncesto o el

voleibol, son frecuentes las caídas pisando el pie de un compañero o contrario.

Entre las lesiones en cuyo mecanismo están involucrados los aterrizajes está la

rotura del ACL (Yu y cols., 2002a; Yu y cols., 2002b; Chappell y cols., 2005;

Chaudhari y cols., 2005; Hewett y cols., 2005). Dos tercios de estas lesiones suceden

durante la amortiguación de una caída (Zazulak y cols., 2005). Este hecho es

particularmente importante en las mujeres deportistas, en las que se describen diferentes

factores que incrementan el riesgo de sufrir lesiones en la amortiguación de caídas

(Tabla 2.7). En fútbol este riesgo es de dos a tres veces mayor que en hombres y en

baloncesto llega a ser de cinco a ocho veces mayor (Zazulak y cols., 2005).

64

Page 77: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

Estado actual de conocimientos

AUTOR Nº SUJETOS EDAD (AÑOS) CARACTERÍSTICAS ALTURA DE CAÍDA TIPO DE MEDICIÓN SIG MAYOR RIESGO

Hewett y cols. (1996) 11 M y 9 H M = 15.0 ± 0.6 H = 15.0 ± 0.3 Jugadores de voleibol Previo salto máximo Cinética *** Hombres

Cowling y cols. (2001) 11 M y 7 H 22.6 ± 2.5 Físicamente activos Previo salto máximoCinemática

Cinética Electromiografía

ns ns *

Mujeres

Chappell y cols. (2002) 10 M y 10 H M = 21.0 ± 1.7 H = 23.4 ± 1.1

Atletas recreacionales practicaban A.F. 3 dias a la

semanaPrevio salto máximo Cinética

Cinemática *** *** Mujeres

Fagenbaum y cols. (2003) 8 M y 6 H - Jugadores de baloncesto

universitarios 25.4 y 50.8 cm Electromiografía Cinemática

ns * Hombres

Ford y cols. (2003) 47 M y 34 H M = 16.0 ± 0.2 H = 16.0 ± 0.2 Jugadores de baloncesto Drop Jump (31 cm) Cinemática

Cinética** ns Mujeres

Chappell y cols. (2005) 10 M y 10 H M = 21.7 ± 2.1 H = 23.7 ± 0.8

Atletas recreacionales practicaban A.F. 3 dias a la

semanaPrevio salto máximo Cinemática *** Mujeres

Kernozek y cols. (2005) 15 M y 15 H M = 23.6 ± 1.76 H = 24.5 ± 2.26

Atletas recreacionales universitarios 60 cm Cinemática

Cinética* * Mujeres

Swartz y cols. (2005)4 grupos

(15 G, 15 B, 14 M y 14 H)

G = 9.2 ± 1.0 B = 9.41 ± 0.9 M = 24.2 ± 2.2 H = 23.5 ± 3.2

Físicamente activosPrevio salto al 50% de la altura alcanzada en un

salto máximoCinética ns No diferencias

Yu y cols. (2005) 30 M y 30 H 11 a 16 Practicaban fútbol 2 o 3 veces a la semana Previo salto máximo Cinemática *** Mujeres

Zazulak y cols. (2005) 13 M y 9 H -Jugadores de futbol de 1ª

división y atletas universitarios

30.5 y 45.8 cm Electromiografía * Mujeres

Tabla 2.7: Estudios que analizan las diferencias de sexo en las amortiguaciones de caídas. (H = hombres; M = Mujeres; G = Niñas; B = Niños; A.F. = actividad física; SIG = significación estadística; * = p < 0.05; ** = p < 0.01; *** = p < 0.001; ns = no significativas).

El mayor riesgo para la lesión del ACL durante la caída se da en el primer 25%

del tiempo de la amortiguación, cuando la rodilla tiene una flexión entre 33º y 48º,

soportando la mayor tensión el ligamento sobre los 0.040 s, instante en el que se da

también F2 (Pflum y cols., 2004). Así, el comportamiento cinético recogido en las

fuerzas de reacción verticales del suelo, va a guardar relación con los tiempos en los que

el ACL va a ser solicitado al máximo. Hemos encontrado trabajos que relacionan un

valor alto en F2 con una mayor tensión en el ACL (Pflum y cols., 2004; Hewett y cols.,

2005). Hewett y cols. (2005) encontraron valores en las fuerzas de reacción verticales

un 20% superiores en mujeres que posteriormente tuvieron lesiones en el ACL.

En los estudios sobre los mecanismo de rotura del ACL predominan los

análisis cinemáticos (Decker y cols., 2003; Hargrave y cols., 2003; Kernozek y cols.,

2005; Pflum y cols., 2004) y de activación muscular (Colby y cols., 2000; Cowling y

cols., 2003; Kain y cols., 1998; Malinzak y cols., 2001; Pflum y cols., 2004; Zazulak y

65

Page 78: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

Biomecánica del vendaje funcional de tobillo

cols., 2005). No hemos encontrado estudios que comparen, según el sexo, las fuerzas de

reacción en diferentes tipos de caídas.

Finalmente, aun sin considerar el riesgo de lesión del ACL, el estudio de las

fuerzas de reacción verticales en la amortiguación de caídas es interesante desde la

perspectiva de que la mejor amortiguación será aquella que menores valores obtenga en

los picos de fuerza, por la posibilidad de que si estos fueran demasiado altos podrían

estar involucrados en diferentes mecanismos de lesión por impacto y transmisión de

fuerzas y vibraciones a través de la cadena cinética del sistema ostemuscular.

2.2.6.3.- Influencia del vendaje en la amortiguación

Los vendajes funcionales preventivos de tobillo, que son frecuentemente usados

en deportes donde abundan los saltos podrían, aun cubriendo bien la función para la que

fueron fabricados, promover la aparición de nuevas y diferentes lesiones en la caída de

saltos al interferir en la capacidad de amortiguación de las articulaciones del tobillo y

pie (Alt y cols., 1999). En este sentido, mediante el estudio de las fuerzas de reacción

verticales del suelo se puede observar si las limitaciones en el ROM de la flexo-

extensión y la inversión-eversión, que aportan los vendajes, pudieran tener efecto sobre

el impacto recibido en las caídas de saltos que parten del suelo o desde superficies

elevadas (Riemann y cols., 2002; Yi y cols., 2003 Barceló, 2004). Concretamente en el

segundo pico de la gráfica fuerza-tiempo, que es el valor más alto de las fuerzas de

reacción verticales durante la amortiguación y que ha sido relacionado por diferentes

autores con el origen de algunas lesiones (Mizrahi y Susak, 1982; Dufek y Bates, 1991;

McNair y Marshall, 1994).

66

Page 79: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

Estado actual de conocimientos

Yi y cols. (2003) encontraron incrementos en los picos de fuerza en la

amortiguación de caídas desde 0.4 m con la utilización de los vendajes, que explicaban

por la menor activación que presentaba el sóleo y, por lo tanto, la menor absorción de

las fuerzas durante el inicio de la amortiguación. Riemann y cols. (2002), en

amortiguaciones desde 0.6 m, no encontraron diferencias en los picos de fuerza con los

vendajes, pero sí observaron que se adelantaba la aparición del segundo pico de fuerza.

Esta alteración sugiere que durante actividades dinámicas, las estructuras músculo-

esqueléticas tienen menos tiempo para reducir el impacto durante la amortiguación. En

este mismo sentido McCaw y Cerullo (1997) registraron con la utilización de vendajes

una reducción del ROM en la flexión de tobillo y una reducción de la velocidad

angular durante la amortiguación de caídas desde 0.6 m. Esto nos indicaría que la

utilización de los vendajes podría afectar de forma negativa en la amortiguación de

caídas desde superficies elevadas.

En amortiguaciones de saltos, algunos autores, no han registrados diferencias

en las fuerzas de reacción por la utilización de los vendajes, ni en el valor de los picos ni

en el instante en el que sucedían (Hopper y cols., 2005; Sacco y cols., 2004). Tampoco

se han encontrado diferencias en la activación de gemelos, tibial anterior y peroneos

(Hopper y cols., 2005). Sin embargo, Barceló (2004) encontró incrementos en el

segundo pico de fuerza con la utilización de dos vendajes preventivos, mientras que este

parámetro no se vio modificado cuando utilizaba un vendaje terapéutico. Al contrario de

lo esperado, cuando analizó el tiempo desde el inicio de la amortiguación hasta el

segundo pico de fuerza, los vendajes preventivos no obtuvieron diferencias con respecto

a la situación sin vendaje y el vendaje terapéutico mostró valores más elevados.

67

Page 80: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

Biomecánica del vendaje funcional de tobillo

2.2.7.- Influencia en otros aspectos de la biomecánica

Hay desacuerdo en cuanto a la influencia del vendaje sobre la propiocepción del

tobillo. Por un lado, se ha encontrado que el vendaje mejora la propiocepción (Heit y

cols., 1996; Robbins y cols. 1995; Alt y cols., 1999) que según Robbins y cols. (1995)

paliaría el efecto adverso que provoca el calzado deportivo en este aspecto. Por otro

lado, hay algunos estudios que no observan influencia del vendaje sobre estos aspectos

(Allison y cols., 1999; Hubbard y Kaminski, 2002; Kaminski y Gerlach, 2001). En este

sentido, Refshauge y cols. (2000) no encontraron que los tobillos inestables tuvieran

falta de propiocepción, medida como la reproducción pasiva de un movimiento de

flexo-extensión de tobillo, ni tampoco que el vendaje mejorara la reproducción de estos

movimientos.

Allison y cols. (1999) realizaron dos tipos de vendaje, uno que restringía de

forma mecánica el movimiento por el que se producen los esguinces y otro simplemente

compresivo (para eliminar la acción mecánica) y vieron que ninguno de los dos influía

en la respuesta de los peroneos a la inversión rápida en sujetos sanos. Sin embargo, en

un estudio realizado en sujetos con inestabilidad en el tobillo de Karlsson y Andreasson

(1992) hallaron que el vendaje reducía el tiempo de respuesta de los peroneos.

Encontramos dos estudios, con dispar resultado, que analizaron cómo influyeron

los vendajes funcionales en la fuerza que realiza la musculatura que atraviesa el

tobillo. Por un lado, Paris y Sullivan (1992) observaron que el vendaje no modificó la

fuerza realizada por la parte inferior de la pierna en la inversión y eversión del tobillo,

en un test isométrico con el tobillo colocado en posición neutra. Por otro lado, Gehlsen

y cols. (1991) encontraron que la utilización del vendaje redujo la fuerza que aplicaba el

68

Page 81: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

Estado actual de conocimientos

tobillo en movimientos de extensión sobre un isocinético a 30, 120 y 180 º/s, mientras

que en el momento de fuerza de la flexión, pese a encontrar una tendencia a ser menor,

no se registraron diferencias significativas.

Contrariamente a lo que esperaban, Kaminski y Gerlach (2001) observaron que

ni el vendaje ni un soporte de neopreno mejoraron la kinestesia del tobillo,

reproduciendo posiciones a 10º de eversión, neutral a 0º, 20º y 30º de inversión. En un

estudio posterior, Hubbard y Kaminski (2002) encontraron que el vendaje no modificó

la reproducción de un movimiento pasivo de inversión y eversión a 0.5 º/s.

Otros autores han encontrado aspectos que mejoran por la utilización de los

vendajes. Alt y cols. (1999) observaron que el vendaje incrementó la activación

electromiográfica relativa. Esto, junto al aumento de la temperatura de la piel

provocaría que las estructuras estuvieran en mejores condiciones para responder a las

solicitaciones mecánicas.

El estudio e investigación de la biomecánica de los vendajes funcionales, ha de

permitir en los próximos años conocer con mayor precisión hasta qué punto podrían

llegar a limitar el rendimiento o favorecer la aparición de nuevas lesiones, para

restringir su uso sólo en los casos indicados y conocer más profundamente las

modificaciones que el vendaje va a producir en la técnica deportiva.

69

Page 82: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

Biomecánica del vendaje funcional de tobillo

2.3.- TIPOS DE FABRICACIÓN BÁSICOS

Para la confección de los vendajes funcionales preventivos de tobillo se usan

diferentes tipos de vendas: no elásticas, elásticas o incluso una combinación de ambas.

En este apartado se van a describir las características de cada una de ellas y las

propiedades de los vendajes resultantes. Los datos de los ensayos mecánicos que

aparecen en este apartado han sido realizados con vendas no elásticas (Strappal. BSN

medical. Vibraye, Francia) y elásticas (Tensoplast Sport. BSN Medical. Vibraye,

Francia) en el Laboratorio de Biomecánica Humana y Deportiva de la Universidad de

Castilla-La Mancha de Toledo.

El vendaje es una técnica muy antigua. Ya en papiros de Smith y Eber, de más

de 3000 años de antigüedad, se muestra cómo se aplicaban en esos tiempos trozos de

lino impregnados de resinas, y por tanto adhesivos, para la constricción de las heridas

(Montag y Asmussen, 1992). En un principio, el objetivo de los vendajes funcionales

fue la curación de las lesiones, pero más adelante se utilizaron para la prevención,

cobrando importancia la protección de una estructura sana, minimizando el riesgo de

lesiones y sin comprometer la función fisiológica de la articulación. Por ejemplo, en los

primeros Juegos Olímpicos de la era moderna, celebrados en Atenas en 1896, eran

utilizados por los boxeadores para proteger las articulaciones de sus dedos (Bové,

2005).

El mayor auge de los vendajes funcionales tuvo lugar hacia 1930, proveniente

de Estados Unidos y respaldado por la multinacional americana Cramer que difundió la

prevención de las lesiones por medio de este método. El deporte pionero, donde se

iniciaron las técnicas de vendaje de prevención en las extremidades inferiores, fue el

70

Page 83: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

Estado actual de conocimientos

baloncesto. Hacia mediados de los 60 fueron los propios jugadores de baloncesto los

encargados de importar a Europa estas técnicas provenientes de Estados Unidos (Bové,

2005). Al principio, la técnica más utilizada fue el Basket-Wave, consistente en la

estabilización de la articulación mediante tiras activas intercaladas. Posteriormente a

esta técnica se le añadieron tiras activas para provocar una mayor restricción en los

movimientos deseados.

En España, uno de los pioneros de los vendajes funcionales fue el podólogo

Aymami. En las décadas de los 70 y 80, antes de que aparecieran los manuales que

actualmente se utilizan de Neiger (1990) y Bové (2005), ya realizaba de forma habitual

vendajes funcionales de tobillo. Aymami utilizaba una técnica algo diferente a la

descrita por Neiger y Bové, que se apoyaba su experiencia profesional. Recalcaba la

importancia de colocar el vendaje directamente sobre la piel, sin utilizar prevendaje. No

utilizaba anclajes y reducía el número de tiras activas. Colocaba dos tiras verticales

para estabilizar la articulación y otras dos tiras activas (sin llegar a ser figuras en ocho)

que limitaban el movimiento de extensión e inversión. No rasuraba a los pacientes,

debido a que decía que el pelo actuaba de capa protectora de la piel y reducía las

posibles irritaciones por la tracción del vendaje. Posteriormente se ha visto la

importancia que tiene colocar el vendaje directamente sobre la piel para mejorar las

sensaciones exteroceptivas y propioceptivas y para incrementar la acción mecánica, así

como no acumular excesivo número de tiras que puedan perjudicar la funcionalidad del

vendaje. No se tiene constancia de que Aymami dejara documentos escritos sobre su

forma de trabajar; lo que aquí se ha explicado de él es una síntesis de conversaciones

mantenidas con personas que estuvieron en contacto con Aymami (Rafael Martín Acero

y Jaume Campderrós).

71

Page 84: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

Biomecánica del vendaje funcional de tobillo

2.3.1.- Con vendas no elásticas:

El primer vendaje funcional considerado como tal fue realizado con un

material no elástico llamado Leukoplast por Beiersdorf en el año 1892 y Gibney

desarrolló el primer vendaje funcional de tobillo con una técnica que posteriormente ha

continuado utilizándose, con diversas modificaciones, a lo largo del tiempo. En un

principio esta técnica solamente se centró en la estabilización de la articulación. Más

adelante, debido a la necesidad de limitar determinados movimientos, por las

solicitaciones que se requieren en algunos deportes, la técnica fue modificada

incrementando la restricción de los movimientos que mayor riesgo de lesión tenían

(Montag y Asmussen, 1992).

2.3.1.1.- Propiedades de los materiales no elásticos

Los materiales no elásticos permiten deformaciones muy limitadas.

Tradicionalmente son los más utilizados para la confección de los vendajes funcionales

preventivos en cualquier articulación. De hecho, todos los artículos que hemos

consultado donde se analizan el ROM o la fatiga en vendajes funcionales de tobillo

utilizan materiales no elásticos, bien de forma exclusiva o en combinación con

materiales elásticos.

El material que se utiliza para la confección del vendaje es el Tape, una venda

no elástica y rígida (tanto a lo largo como a lo ancho) con material adhesivo en su cara

interna, y que se trata de una variante del esparadrapo clásico (Bové, 2005).

Principalmente, hay dos laboratorios que comercializan las vendas para la

realización de este tipo de vendajes. El laboratorio de Beiersdorf (Hamburgo,

72

Page 85: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

Estado actual de conocimientos

Alemania), que la denomina Leukotape y la presenta con anchuras de 2, de 3.75 y de 5

cm y con una longitud de 10 m. La anchura de 3.75 cm es la más utilizada para la

realización de los vendajes funcionales preventivos de tobillo (Bove, 1989 y Neiger,

1990). Por otro lado el laboratorio de Smith & Nephew (Londres, Inglaterra) la

denomina Strappal y la comercializa con unas medidas en anchura de 2.5 y de 4 cm y

con una longitud de 10 m. La anchura de 4 cm es la más utilizada para la realización

de los vendajes funcionales preventivos de tobillo (Bove, 1989 y Neiger, 1990). Ambos

laboratorios usan viscosa impregnada en caucho de cinc para fabricar las vendas. Como

resultado obtienen una tira de color blanco, fuertemente adhesiva, permeable al aire, con

gran resistencia a la tracción y fácil de rasgar. Estas vendas presentan una curva de

esfuerzo-deformación desplazada hacia la izquierda respecto a las vendas elásticas

(Figura 2.13), con un modulo de Young mayor (2.98 MPa), un punto de tensión máxima

más elevado (20.28 MPa) y poseen una elongación en el punto de máxima tensión

menor (6.8%). Las vendas elásticas en la realización del vendaje se colocaron con una

elongación del 64 % y se ha calculado el Módulo de Young para esa deformación en

0.33 MPa (Tabla 2.8).

73

Page 86: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

Biomecánica del vendaje funcional de tobillo

0 10 20 30 40 50 60 70 8

ε (%)

σ (M

Pa)

0

VENDAS ELÁSTICAS

VENDAS NO ELÁSTICAS

5

20

15

10

64(*)

Figura 2.13: Curvas de esfuerzo-deformación hasta el punto de máximo esfuerzo de una venda no elástica (espécimen de 50 cm de largo, 4 cm de ancho y 0.26 mm de grosor de Strappal. BSN medical. Vibraye, Francia) y otra elástica (espécimen de 30 cm de largo, 6 cm de ancho y 0.95 mm de grosor de Tensoplast Sport. BSN Medical. Vibraye, Francia). La X corresponde a la elongación con la que se aplicaba la venda en la confección del vendaje. Los ensayos han sido realizados en el Laboratorio de Biomecánica Humana y Deportiva de la Universidad de Castilla-La Mancha de Toledo.

VENDA ELÁSTICA VENDA NO ELÁSTICA

MAXIMA ELONGACIÓN (%) 69.3 6.8

TENSIÓN MÁXIMA (MPa) 7.06 20.28

MÓDULO DE YOUNG (MPa) 0.10 2.98

Tabla 2.8: Valores de fuerza y deformación de una venda no elástica (espécimen de 50 cm de largo, 4 cm de ancho y 0.26 mm de grosor de Strappal. BSN medical. Vibraye, Francia) y otra elástica (espécimen de 30 cm de largo, 6 cm de ancho y 0.95 mm de grosor de Tensoplast Sport. BSN Medical. Vibraye, Francia). Los ensayos han sido realizados en el Laboratorio de Biomecánica Humana y Deportiva de la Universidad de Castilla-La Mancha de Toledo.

2.3.1.2.- Características de los vendajes no elásticos

Los vendajes no elásticos son los más utilizados en el mundo del deporte como

método preventivo. Al ser tensados provocan una restricción del movimiento de forma

brusca debido a que producen un tope rígido. Las vendas no elásticas dan como

resultado un vendaje menos voluminoso, ya que son menos gruesas (no elástica Strappal

74

Page 87: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

Estado actual de conocimientos

= 0.26 mm; elástica Tensoplast Sport = 0.95 mm) y más ligeras que las elásticas (1 m de

venda no elástica Strappal = 8.64 g; 1 m de venda elástica Tensoplast Sport = 23.80 g). Se

les considera más resistentes a las solicitaciones en tracción, lo que parece determinar

una acción estabilizadora más importante (Neiger, 1990).

2.3.2.- Con vendas elásticas

El vendaje realizado con material textil elástico fue utilizado por primera vez por

E. Bender en 1897, e inició otra era importante para la técnica del vendaje funcional,

debido a las nuevas propiedades que aportaban los materiales elásticos (Montag y

Asmussen, 1992).

2.3.2.1.- Propiedades de los materiales elásticos

Los materiales elásticos permiten deformaciones y elongaciones importantes

en anchura y longitud. Los que habitualmente se utilizan para la realización de vendajes

funcionales de tobillo solamente tienen elasticidad longitudinal y normalmente no se

utilizan de forma exclusiva para realizar vendajes funcionales preventivos, aunque sí en

combinación con tiras de material no elástico.

Las vendas elásticas son casi exclusivamente de un tejido de algodón textil-

elástico. Tienen una elasticidad limitada (30-60%), ceden ante pequeños esfuerzos,

tienen poca fatiga ante esfuerzos repetidos y poseen resistencia a la tracción (Montag

y Asmussen, 1992). Como nos comentan Montag y Asmussen, la venda elástica es más

resistente a la tensión máxima que la no elástica (fuerza máxima soportada por la venda

elástica Tensoplast Sport de 6 cm de ancho = 402.2 N; fuerza máxima soportada por la

venda no elástica Strappal de 4 cm de ancho = 210.9 N) debido a que es más gruesa y

75

Page 88: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

Biomecánica del vendaje funcional de tobillo

más ancha. Sin embargo, hemos encontrado que por unidad de superficie es más

resistente a la tensión máxima la venda no elástica que la elástica (venda elástica

Tensoplast Sport = 7.06 MPa; venda no elástica Strappal = 20.28 MPa) (Tabla 2.8).

Como ocurría con el vendaje no elástico, también hay principalmente dos

laboratorios que comercializan este tipo de vendas. El de Beiersdorf la denomina

Elastoplast, tiene unas dimensiones en anchura de 6, de 8 y de 10 cm, en longitud de 2.5

m y es del color de la piel. La más utilizada para la confección de vendajes funcionales

preventivos de tobillo es la que tiene una anchura de 6 cm. Smith & Nephew denomina

a su venda elástica Tensoplast, teniendo una variante diseñada para la aplicación

deportiva, que se denomina Tensoplast Sport, con unas dimensiones en anchura de 3, de

6, de 8 y de 10 cm, con una longitud de 2.5 m y de color blanco. La más utilizada para

la realización de vendajes funcionales preventivos de tobillo es la de 6 cm. Las vendas

de ambos laboratorios están realizadas con caucho de óxido de cinc y algodón. Son

fuertemente adhesivas, tienen elasticidad longitudinal limitada y un gran efecto de

compresión. Las vendas elásticas presentan una curva de esfuerzo-deformación

desplazada hacia la derecha respecto a las no elásticas (Figura 2.13), con un módulo de

Young menor (0.10 MPa), un punto de tensión máxima más bajo (7.06 MPa) y poseen

una elongación en el punto de máxima tensión mayor (69.3%) (Tabla 2.8).

2.3.2.2.- Características de los vendajes elásticos

Los vendajes realizados íntegramente con tiras elásticas provocan una limitación

del movimiento de forma progresiva, debido a que cuanto más tensa se encuentra la

venda mayor restricción provoca. Este tipo de vendajes tradicionalmente se usaban

76

Page 89: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

Estado actual de conocimientos

con funciones terapéuticas (Neiger, 1990; Hume and Gerrard, 1999) debido a que el

efecto de compresión provoca una acción antiedematosa.

A este tipo de materiales se le asocia una acción estabilizadora menos

importante que a los materiales no elásticos, lo que según Neiger (1990) puede ser

ampliamente discutido. El avance en los nuevos materiales y los resultados prácticos

señalan la gran eficacia estabilizadora de las vendas adhesivas elásticas cuando éstas

son preestiradas fuertemente antes de ser aplicadas (Neiger, 1990). Además, el

fenómeno de la “sensación elástica” al restringir el movimiento confiere un aspecto

dinámico corrector que viene a reforzar la limitación al alargamiento, provocando una

restricción del movimiento parecida a la que producen las estructuras anatómicas que

limitan los movimientos. En la Figura 2.14 se muestra la curva típica de fuerza-

deformación de un ligamento (Nigg y Herzog, 1999). Como se puede apreciar en las

imágenes la pendiente de la curva es menos acusada al principio para permitir los

movimientos con la mínima resistencia, sin embargo, según se incrementa la

deformación la fuerza necesaria es mayor. Este comportamiento sería similar al que

ofrecería el vendaje elástico, mientras que con el vendaje no elástico la resistencia se

produce desde el inicio, debido a que este tipo de vendas tienen una elasticidad limitada

comparado con las elásticas, mostrando una línea con una gran pendiente desde el inicio

hasta el momento de rotura. (Figura 2.13 y Tabla 2.8).

77

Page 90: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

Biomecánica del vendaje funcional de tobillo

Figura 2.14: curva típica de fuerza-deformación de un ligamento de conejo. (Adaptado de Nigg y Herzog, 1998).

2.3.3.- Combinación vendas no elásticas y vendas elásticas.

Los dos tipos de vendas pueden ser utilizados de forma complementaria para la

realización de un mismo vendaje funcional, aprovechando los beneficios de ambos

materiales. En este caso lo más apropiado sería utilizar en los anclajes y en las primeras

vendas activas que se colocan el material elástico, y en capas exteriores vendas activas

de refuerzo de material no elástico, para restringir de forma más vigorosa un

movimiento determinado. Al hacer esto conseguiríamos un vendaje con las propiedades

de ambos materiales. Por un lado, la comodidad del material elástico para la realización

de los anclajes, ya que este material se adapta mejor a los contornos óseos. Por otro

lado, una restricción combinada de ambos materiales, primero aparecería de forma

progresiva la restricción de las vendas elásticas hasta que se tensaran las vendas no

elásticas, que provocarían una limitación rígida o tope en el movimiento. Gracias a la

restricción previa del material elástico, este tope no sería tan brusco como cuando se

utiliza solamente el material no elástico.

78

Page 91: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

33.. OObbjjeettiivvooss

Page 92: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL
Page 93: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

Objetivos

3.- OBJETIVOS

Se van a enumerar por separado los objetivos general y específicos.

3.1.- OBJETIVO GENERAL

El objetivo general de este trabajo ha sido analizar el efecto del vendaje

funcional preventivo de tobillo en la capacidad de restricción de movimientos y en la

posible pérdida de eficacia en diferentes tipos de tests.

3.2.- OBJETIVOS ESPECÍFICOS

Los objetivos específicos han sido divididos en metodológicos y aplicados.

Los metodológicos han sido:

1. Comparar diferentes tests de marcha, carrera, amortiguación de caída y cambio

de dirección en dos grupos extremos en cuanto a la morfología de sus pies:

planos y cavos.

2. Poner a punto una metodología de análisis de fuerzas de reacción en la

amortiguación de diferentes tipos de caídas.

3. Comparar entre un grupo de hombres y otro de mujeres la capacidad de

amortiguación en diferentes tipos de caídas (previo salto y desde plataformas

elevadas a 0.75 m).

Los aplicados han sido:

4. Analizar la influencia del vendaje no elástico en dos tests de equilibrio: apoyo

monopodal y ajuste postural.

5. Cuantificar el grado de restricción inicial y la pérdida de eficacia tras 30 minutos

de ejercicio intenso de dos tipos de vendaje: uno realizado con vendas elásticas y

otro con no elásticas, en un grupo de mujeres.

81

Page 94: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

Biomecánica del vendaje funcional de tobillo

6. Analizar la influencia sobre el rendimiento en saltos y capacidad de

amortiguación de dos vendajes funcionales preventivos de tobillo: uno realizado

con vendas elásticas y otro con no elásticas, en un grupo de mujeres.

7. Extraer recomendaciones prácticas para deportistas, entrenadores, fisioterapeutas

y preparadores físicos.

82

Page 95: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

44.. MMeettooddoollooggííaa

Page 96: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL
Page 97: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

Metodología

4.- METODOLOGÍA

Inicialmente, en el diseño experimental se va a explicar de forma esquemática la

sucesión de trabajos de los que consta esta memoria, así como el nexo o vínculo que une

unos estudios con otros. Posteriormente se expondrán los protocolos y el tratamiento de

datos usados. Finalmente se describirán las metodologías empleadas en cada estudio.

4.1.- DISEÑO EXPERIMENTAL

El trabajo se ha estructurado en cinco estudios (Figura 4.1), los tres primeros son

de tipo metodológico y los dos últimos aplicados. Inicialmente se comparó en varias

actividades a un grupo de sujetos con los pies planos extremos frente a otro con los pies

cavos extremos, para analizar si el tipo de pie pudiera influir en los resultados de

diferentes tests (Estudio 1). A continuación se comparó la amortiguación de caída de

salto en un grupo de mujeres frente a otro de hombres (Estudio 2). En un nuevo estudio

se comparó la amortiguación previo salto con la amortiguación cayendo desde alturas

más elevadas, también en un grupo de mujeres frente a otro de hombres (Estudio 3).

Después se realizó un estudio para ver la influencia del vendaje funcional preventivo de

tobillo en dos tests de equilibrio y uno de salto (Estudio 4). En los resultados de los

primeros estudios se encontró que los hombres no se comportan igual que las mujeres

en los movimientos analizados, por lo que se decidió coger un grupo homogéneo en

cuanto a sexo para el último estudio (Estudio 5). Se escogieron mujeres ya que son más

sensibles a diferentes tipos de amortiguación, como se vio en el Estudio 3, y tienen un

mayor riesgo de lesión que los hombres en los movimientos analizados, como se ha

comentado en el estado actual de conocimientos. Se descartaron los sujetos con pies

cavos y planos extremos, pues en el Estudio 1 se vio que se podían comportar de forma

diferente. En el último estudio se buscó comparar la influencia de dos tipos de vendaje

85

Page 98: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

Biomecánica del vendaje funcional de tobillo

diferente, uno realizado con vendas elásticas y otro con vendas no elásticas, en saltos y

amortiguaciones de caídas (Estudio 5).

ESTUDIO OBJETIVO SUJETOS

1 Analizar las diferencias en las fuerzas de reacción según las distintas tipologías extremas de pies (cavos y planos)

n = 15mujeres sedentarias , 8 con pies planos extremos y 7 con pies cavos extremos.

2 Analizar las diferencias entre hombres y mujeres en la fuerza de reacción vertical y la posición del centro de gravedad durante la amortiguación de test de salto

n = 383 92 mujeres y 291 hombres, aspirantes a

ingresar en una facultad de Ciencias del Deporte

3(1)Estudiar en 2 grupos (hombres y mujeres) 6 tipos de aterrizajes diferentes

mediante una plataforma de fuerzas; 4 partiendo desde 0.75 m y 2 previo salto. (2) Discutir sobre como influye en ambos grupos la altura desde la que se cae

n = 3015 mujeres y 15 hombres, físicamente

activos

4 Analizar la influencia del vendaje funcional preventivo de tobillo en 2 tests de equilibrio y 1 test de salto

n = 158 mujeres y 7 hombres, físicamente

activos

5

(1) Analizar la influencia de 2 vendajes funcionales preventivos de tobillo (elástico y no elástico) en la fuerza de reacción vertical de la amortiguación de caídas y en el rendimietno de los saltos. (2) Comparar la fatiga de estos dos vendajes después de

realizar 30 minutos de ejercicio intenso y contrastar estos valores con la percepción que los sujetos tienen sobre la restricción y la comodidad de los vendajes

n = 27mujeres físicamente activas

Figura 4.1: Esquema del diseño experimental del trabajo.

86

Page 99: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

Metodología

4.2.- PROTOCOLOS

En este apartado se describen los protocolos de: normas éticas y criterios de

inclusión, cineantropometría, familiarización y calentamiento y elaboración de los

vendajes funcionales.

4.2.1.- Normas éticas y criterios de inclusión

Todos los sujetos, tras ser informados por el investigador de las pruebas y tests

que tendrían que realizar, firmaron una carta de consentimiento (Anexo 1). Todos

participaron de forma voluntaria y podían abandonar el estudio en cualquier momento,

simplemente con comunicarlo al investigador. Ningún sujeto cobró por participar y el

único beneficio, además de su aportación altruista al conocimiento científico generado,

fue poder tener sus resultados en los diferentes tests. Se siguieron los protocolos

indicados en la Declaración de Helsinki (Asociación Médica Mundial, 1964) sobre las

investigaciones médicas en seres humanos y las recomendaciones sobre la protección de

datos de carácter personal (Ley Orgánica 15/99), para que no se pueda desprender de la

lectura de este trabajo la identificación de las personas que fueron sujetos de estudio.

Solamente en el caso de los aspirantes a ingresar en la Facultad de Ciencias del Deporte

estos consentimientos no fueron firmados por las condiciones en las que se realizó la

prueba. No obstante, todos fueron informados del tratamiento que iban a sufrir sus datos

y de que podían negarse a que sus datos formaran parte del estudio.

Todos los sujetos fueron estudiantes universitarios o aspirantes al ingreso en una

facultad de Ciencias del Deporte. Todos los sujetos excepto los aspirantes al ingreso en

la Facultad contestaron a unas preguntas, que sirvieron para clasificar los grupos que

participaron en los diferentes estudios y descartar a todos aquéllos que presentaran

87

Page 100: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

Biomecánica del vendaje funcional de tobillo

algún tipo de lesión en los últimos dos años o algún problema físico que les impidiese

realizar pruebas máximas (Anexo 2). Todos los sujetos realizaron los tests con calzado

polivalente para deportes de cancha de características similares entre sí y se comprobó

que ningún sujeto tuviera prótesis o usara de forma habitual ortesis en el miembro

inferior. En los estudios realizados con vendaje (Estudios 4 y 5) se comprobó mediante

exploración de un fisioterapeuta, que ninguno de los participantes tuviera distensión de

ligamentos del tobillo que provocara bostezo articular.

Se usó el criterio de “sujetos sedentarios” cuando se cumplía que: los sujetos no

habían realizado ningún programa de entrenamiento en los tres meses previos, ni

practicado actividad física más de un día por semana. Se usó el criterio de “sujetos

físicamente activos” cuando se cumplía que: los sujetos realizaban actividad física al

menos dos días por semana, no participaban en deporte a nivel competitivo y no habían

realizado ningún programa de entrenamiento específico en los tres meses previos.

4.2.2.- Cineantropometría

Para caracterizar a los subgrupos se realizaron medidas cineantropométricas. Se

usaron los protocolos recomendados por el Grupo Español de Cineantropometría

publicados en el manual de Esparza (1993). Los sujetos fueron pesados y tallados. Se

tomaron los porcentajes muscular, graso y óseo a partir de la suma de seis pliegues

grasos (subescapular, tríceps, suprailíaco, abdominal, anterior del muslo y pierna),

tomando la media de tres medidas en cada uno y aplicando las ecuaciones que propone

Carter (1982). Se halló la masa libre de grasa (FFM) a partir de restar la masa grasa a la

masa total de los sujetos. El material empleado para realizar la antropometría fue una

báscula de pie SECA (SECA Ltd., Alemania), un antropómetro GPM (SiberHegner Ltd.,

88

Page 101: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

Metodología

Japón), una cinta antropométrica Holtain (Holtain Ltd., Reino Unido), un paquímetro

GPM (SiberHegner Ltd., Japón), un plicómetro Holtain (Holtain Ltd., Reino Unido) y

un tallímetro SECA (SECA Ltd., Alemania).

En los Estudios 1 y 5 se obtuvieron las huellas plantares estáticas de los sujetos

mediante fotopodograma (Viladot, 1989). En el Estudio 1 se parametrizaron estas

huellas con el método descrito por Hernández (1990), mientras que en el Estudio 5

fueron parametrizadas con el método descrito por Cavanagh y Rodgers (1987), basado

en establecer un coeficiente, denominado arch index y que depende de la proporción

entre la superficie de la huella correspondiente al antepie, mediopie y retropie. El

método de Cavanagh y Rodgers es más preciso que el descrito por Hernández, ya que

este último podía cometer algún error en determinados tipos de pies (falso pie cavo

extremo o no detectar bien los pies planos de primer grado) que tuvo que ser corregido

por medio de valoración cualitativa de los fotopodogramas en el primer estudio.

El grupo de aspirantes del Estudio 2 solamente fue pesado y tallado, ya que las

características en las que se realizó la prueba no permitieron más mediciones.

4.2.3.- Familiarización y Calentamiento

En todos los estudios excepto en el Estudio 2 (con aspirantes al ingreso en una

facultad de Ciencias del Deporte) se realizó una sesión de familiarización para practicar

los test en un día previo a la toma de datos. Esta sesión consistió en la demostración y

práctica de cada uno de los tests, informando al sujeto en tiempo real de los resultados

que iba obteniendo. En el Estudio 2 los sujetos conocían previamente a la fecha de la

prueba las características y protocolos del test que iban a realizar.

89

Page 102: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

Biomecánica del vendaje funcional de tobillo

En todas las sesiones de los estudios, excepto en el Estudio 2, los sujetos

realizaron un calentamiento de 10 minutos dirigido por el investigador. El

calentamiento consistió en: 5 minutos de cicloergómetro con una intensidad de 75 W,

tres minutos de estiramientos principalmente de miembro inferior, varios saltos

submáximos y varios máximos y por último una repetición de la prueba que se iba a

realizar en primer lugar. En el Estudio 2 a todos los sujetos se les dejó un tiempo

mínimo de 10 minutos para que realizaran un calentamiento no dirigido.

4.2.4.- Elaboración de los vendajes funcionales preventivos de tobillo

4.2.4.1.- Con vendas no elásticas

El vendaje no elástico (Strappal®. BSN medical. Vibraye, France) consistió en

una variante del propuesto por Neiger (1990). Previamente se pedía a los sujetos que

acudieran a la sesión con las piernas depiladas. La zona donde se realizaba el vendaje se

rociaba con spray (Tensospray®. BSN medical. Vibraye, France) para incrementar la

adherencia de la vendas y proteger la piel de una posible irritación. Se colocó pre-

vendaje exclusivamente a la altura de los maleolos. Se utilizaron dos anclajes, colocados

de forma estandarizada según las proporciones de cada sujeto: el anclaje inferior se

colocó por encima de la cabeza de los metatarsos y el superior al 36% de la distancia

desde el maleolo externo hasta la cabeza del peroné, tomando como punto de origen el

maleolo externo, de esta manera quedaba normalizada la longitud de las tiras con la

longitud de la extremidad inferior. Con cuatro tiras activas se reforzó la estabilidad del

tobillo y con otras cuatro tiras activas se limitó la supinación y la extensión, el vector

resultante de los pares de tiras activas que limitaban la supinación y la extensión queda

reflejado en la Figura 4.2. Se usaron entre 13 y 17 tiras de cierre, dependiendo de las

dimensiones de las extremidades del sujeto (Figura 4.3).

90

Page 103: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

Metodología

ligamento peroneoastragali no

posterior

ligamento peroneoastragalino anteriorligamento peroneocalcáneo

tiras activas

vector resultante

Figura 4.2: Vectores correspondientes a las tiras activas y vector resultante del vendaje no elástico, que limitaba la inversión y la extensión.

Figura 4.3: Fabricación del vendaje funcional preventivo con vendas no elásticas. Las flechas de las imágenes 4 y 5 muestran las direcciones de colocación de las tiras activas (2 = anclajes; 3, 4 y 5 = tiras activas; 6 = cierre).

4.2.4.2.- Con vendas elásticas

El vendaje elástico (Tensoplast® Sport. BSN Medical. Vibraye, France) fue

realizado con las indicaciones que propone Neiger (1990). Se utilizaron los mismos

91

Page 104: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

Biomecánica del vendaje funcional de tobillo

protocolos que con el vendaje no elástico en cuanto a la preparación de la zona a

vendar. Se utilizaron dos anclajes, colocados de forma estandarizada según las

proporciones de cada sujeto: el anclaje inferior se colocó por encima de la cabeza de los

metatarsos y el superior al 82% de la distancia desde el maleolo externo a la cabeza del

peroné, tomando como punto de origen el maleolo externo. Con dos tiras activas se

reforzó la estabilidad del tobillo y con cuatro tiras activas, tensadas de forma

estandarizada según las proporciones de cada sujeto (Ecuación 4.1), se limitó la

supinación y la extensión (Figura 4.4). El vector resultante de los pares de tiras activas

que limitaban la supinación y la extensión queda reflejado en la Figura 4.5.

T = 133. a1 100

T = 106 . a2 100

Ecuación 4.1: Ecuaciones para hallar la longitud de las vendas de cada sujeto, para que la tensión de las tiras fuera igual en todos los sujetos. (T1 = longitud de la primera tira activa, T2 = longitud de la segunda tira activa, en forma de 8, a = distancia desde el maléolo externo a la cabeza del peroné).

Figura 4.4: Fabricación del vendaje funcional preventivo con vendas elásticas (2 = anclajes; 3, 4 y 5 = tiras activas; 6 = cierre).

92

Page 105: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

Metodología

ligamento peroneoastragali no

posterior

ligamento peroneoastragalino anteriorligamento peroneocalcáneo

tiras activas

vector resultante

Figura 4.5: Vectores correspondientes a las tiras activas y vector resultante del vendaje elástico, que limitaba la inversión y la extensión.

93

Page 106: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

Biomecánica del vendaje funcional de tobillo

4.3.- TRATAMIENTO DE DATOS

En este apartado se describen los programas y criterios utilizados en la

obtención, ordenación y análisis de los datos.

Se usaron los siguientes programas informáticos: la hoja de cálculo Microsoft

Excel (Microsoft, España) para almacenar los resultados de las mediciones, el programa

de la plataforma Quattro Jump v. 1.08 (Kistler, Suiza), el programa Bioware 3.2

(Kistler, Suiza), el programa Dinascan 8.2 (IBV, España) y el programa Statistica for

Windows v. 7.0 (Stasoft Inc., EE.UU) para realizar los cálculos estadísticos.

Se utilizaron pruebas de estadística descriptiva, de normalidad y de estadística

inferencial. Se hallaron medias, desviaciones típicas, rangos y correlaciones de Pearson

por el método de los cuadrados cuando las distribuciones eran normales y de Spearman

cuando eran no normales. Para comprobar la normalidad de las distribuciones se usó la

W de Shapiro Wilks, la curtosis y el coeficiente de asimetría.

En las correlaciones y pruebas inferenciales se usó el criterio estadístico de

significación de p<0.05. Cuando éste se cumplía se ha expresado el resultado

ajustándolo al número superior que coincidiera con: p<0.05, p<0.01 o p<0.001. En las

figuras y tablas se ha usado el convenio de p<0.05 = *, p<0.01 = ** o p<0.001 = ***.

La ecuación utilizada para calcular el número mínimo de sujetos necesarios para

que los resultados fueran estadísticamente relevantes se muestra en la Ecuación 4.2. Se

calculo el número mínimo de sujetos en todos los estudios.

94

Page 107: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

Metodología

95

2

22βα

dSD ·)Z(Z · 2n +

=

Ecuación 4.2: Ecuación utilizada para calcular en el número mínimo de sujetos que deben ser utilizados para que los resultados sean estadísticamente relevantes. (SD=Desviación estándar de la variable a estudiar; d=Diferencia de medias de la variable a estudiar; Zβ=Coeficiente asociado al error tipo β, que se fijó en 10-20%; Zα=Coeficiente asociado al error tipo α, que se fijó en 5%).

Page 108: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

Biomecánica del vendaje funcional de tobillo

4.4.- ESTUDIOS METODOLÓGICOS

A continuación se exponen los tres estudios metodológicos que configuran esta

memoria detallando en cada uno: el propósito, las características de los sujetos

participantes, los tests realizados, las variables analizadas y la estadística que se llevó a

cabo.

4.4.1.- Estudio 1: Fuerzas de reacción del suelo en pies planos y cavos

4.4.1.1.- Propósito

El objetivo de este estudio fue analizar las diferencias en las fuerzas de reacción

según las distintas tipologías extremas de pies (cavos y planos) en la marcha, la carrera,

el cambio de dirección y la amortiguación de caída, con el propósito de conocer si estos

tipos de pie condicionan los resultados, y si fuera así poderlo tener en cuenta en los

estudios aplicados.

4.4.1.2.- Sujetos

Participaron 15 mujeres sedentarias: de ellas ocho tenían pies planos extremos y

siete pies cavos extremos. Sus características descriptivas pueden verse en la Tabla 4.1.

Cavos Planos Total

Edad (Años) 19.3 (1.6) 19.4 (1.1) 19.3 (1.3)

Masa (kg) 57.0 (6.7) 57.3 (11.1) 57.1 (9.0)

Estatura (cm) 161.2 (2.8) 161.0 (7.1) 161.1 (5.4)

Masa libre de grasa (kg) 45.5 (3.3) 46.2 (6.6) 45.9 (5.1)

Tabla 4.1.- Variables descriptivas de la muestra estudiada.

96

Page 109: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

Metodología

4.4.1.3.- Tests

Para la medición de las fuerzas de reacción se utilizó una plataforma de fuerzas

piezoeléctrica Kistler 9281CA (Kistler, Suiza), colocada bajo el pavimento sintético de

un polideportivo. Se usó una frecuencia de muestreo de 500 Hz, salvo para la prueba de

amortiguación de caída, que fue de 1000 Hz. Se realizaron cuatro pruebas con el

siguiente orden: marcha, carrera, amortiguación de caída y cambio de dirección, que a

continuación se describen.

MARCHA Y CARRERA: Los sujetos daban vueltas al circuito, cuyo esquema se

puede ver en la Figura 4.6, de la forma más natural posible. Tanto para la marcha como

para la carrera se tuvieron en cuenta varios criterios de observación, para determinar si

el ensayo era metodológicamente correcto, que se muestran en la Tabla 4.2. Para medir

la velocidad media en la marcha y la carrera se usaron dos barreras fotoeléctricas

colocadas con una separación de 6 m. El rango de velocidad para dar como válidos los

ensayos fue: en marcha desde 1.5 hasta 1.7 m/s y en carrera desde 2.8 hasta 3.2 m/s.

97

Page 110: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

Biomecánica del vendaje funcional de tobillo

3 m

FOTOCÉLULA CONO PLATAFORMADE FUERZAS

Situación del investigador

3 m 3 m 3 m

2 m

4 m

Figura 4.6: Esquema de la colocación del material en los tests de marcha y carrera.

ACCIÓN PARA OBSERVAR Aceptación del ensayo

Apoya todo el pie derecho dentro de la plataforma. Sí

Modifica la amplitud en los últimos tres pasos. No

Modifica la frecuencia en los tres últimos apoyos. No

Frena o acelera durante el apoyo en la plataforma. No

Marca el apoyo en la plataforma. No

Ha continuado caminando a la misma velocidad. Sí

Ha realizado algún movimiento extraño. No

Ha sido natural el apoyo. Sí Tabla 4.2: Aspectos tenidos en cuenta para considerar un ensayo metodológicamente correcto en los tests de marcha y carrera.

AMORTIGUACIÓN DE CAÍDA: A los sujetos se les pedía que amortiguaran al

máximo la caída. Caían sobre la plataforma de fuerzas desde una superficie elevada a

una altura de 0.75 m. Debían colocarse con los pies en el borde de la superficie. Se les

98

Page 111: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

Metodología

pedía que dieran un paso hacia delante y que cayeran encima de la plataforma, no

pudiendo perder el equilibrio, para una vez amortiguada la caída volver a colocarse de

pie (Figura 4.7).

- 0.071 s

1.170 s

- 1.514 s

0.273 s

0.071 s

0.008 s0.024 s

0.303 s

0.375 s

1

0.277 s

- 0.344 s

2 3

4

0.000 s

56

8 97

0.008 s0.032 s

0.335 s 0.612 s 0.987 s

Figura 4.7: Instantes representativos de la prueba de amortiguación de caída desde 0.75 m que se hizo con los sujetos del estudio (1 = inicio; 2 = paso adelante; 3 = pies juntos; 4 = contacto suelo; 5 = instante del primer pico de fuerza (F1); 6 = instante del segundo pico de fuerza (F2); 7 = máximo descenso; 8 = duración de la amortiguación; 9 = final, se mantiene la línea del peso corporal).

CAMBIO DE DIRECCIÓN: Los sujetos debían realizar el circuito, cuyo

esquema se puede ver en la Figura 4.8, en el menor tiempo posible. Salían desde detrás

de una barrera fotoeléctrica y corrían 3 m hasta franquear una pica apoyando el pie

derecho en la plataforma de fuerzas. Tras el apoyo cambiaban 120º la dirección de

carrera y recorrían 3 m hasta cortar una segunda barrera fotoeléctrica.

99

Page 112: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

Biomecánica del vendaje funcional de tobillo

LLEGADASALIDA

2,6 m

3 m

Situación del i nvestigador

CONO

FOTOCÉLULA

PICA

PLATAFORMA DE FUERZAS

1 m

Figura 4.8: Esquema de la colocación del material en el test de cambio de dirección.

4.4.1.4.- Variables

Se tomaron las fuerzas de reacción vertical y la anteroposterior en marcha y

carrera, la vertical en la amortiguación de la caída y las de los tres ejes en el cambio de

dirección. Se consideraron los picos de fuerza y el instante en el que sucedía cada uno

de estos acontecimientos en las fuerzas verticales y anteroposteriores de la marcha y la

carrera (pico de frenado, valle y pico de aceleración), así como el tiempo que el pie

estuvo en contacto con el suelo (duración apoyo) y la velocidad a la que se realizó el

cada ensayo (Figura 4.9). En el test de amortiguación de caída se registró el primer y

segundo pico de fuerza vertical de reacción (F1 y F2) y el tiempo desde el inicio de

contacto con el suelo hasta que el valor de la fuerza de reacción vertical cruzaba por

primera vez el peso del sujeto (Time Body Weight = TBW). En el test de cambio de

dirección se registró el tiempo en el que se realizó el circuito, el tiempo que el pie

estuvo en contacto con la plataforma de fuerzas, el pico de fuerza vertical y el pico de

fuerza resultante de las fuerzas anteroposteriores y mediolaterales (Figura 4.10).

100

Page 113: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

Metodología

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0 20 40 60 80 10

% DURACIÓN APOYO

FUER

ZA (B

W)

0

FUERZAS VERTICALES FUERZAS ANTEROPOSTERIORES

PICO DE FRENADO

VALLE

PICO DE ACELERACIÓN

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

0 20 40 60 80 100% DURACIÓN APOYO

FUER

ZA (B

W)

FUERZAS VERTICALES

FUERZAS ANTEROPOSTERIORESPICO DE FRENADO

VALLE

PICO DE ACELERACIÓN

Figura 4.9: Fuerzas vertical y anteroposterior en los tests de carrera (izquierda) y marcha (derecha).

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

0 100 200 300 400 500 600 700

TIEMPO (ms)

FUER

ZA (B

W)

FUERZAS VERTICALES

1º PICO

2º PICO

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

595 645 695 745TIEMPO (ms)

FUER

ZA (B

W)

FUERZAS ANTEROPOSTERIORESFUERZAS MEDIOLATERALESFUERZAS VERTICALES

0 50 100 150

Figura 4.10: Fuerzas en los tests máximos: amortiguación de la caída (izquierda) y cambio de dirección (derecha).

En la marcha y en la carrera se tomaron cinco ensayos metodológicamente

correctos, que se normalizaron, para obtener patrones de movimiento. En el resto de

pruebas se cogió el mejor ensayo de tres realizados correctamente. En la amortiguación

de caída se consideró como mejor ensayo el que menores valores mostraba en el

segundo pico de fuerza de reacción vertical y en el cambio de dirección el que se realizó

en menor tiempo.

4.4.1.5.- Estadística

Se utilizó el test de la U de Mann-Whitney como prueba de significación

estadística para comparar los dos grupos estudiados.

101

Page 114: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

Biomecánica del vendaje funcional de tobillo

El número mínimo de sujetos necesario con una potencia estadística de 0.9 y un

nivel de significación α de 0.05 fue calculado en 7, considerando las diferencias entre

pies cavos y planos en la duración del apoyo del cambio de dirección.

102

Page 115: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

Metodología

4.4.2- Estudio 2: Diferencias de sexo durante la amortiguación de caídas en test de

salto

4.4.2.1.- Propósito

El objetivo de este estudio fue analizar las diferencias entre un grupo de hombres

y otro de mujeres en la fuerza de reacción vertical y la altura del centro de gravedad

durante la amortiguación de un test de salto, realizado en las pruebas de acceso a una

facultad de Ciencias del Deporte, y determinar si las variables de la amortiguación

guardan relación con la potencia de la batida y altura del salto, en cuyo caso estarían

relacionadas con la mayor o menor fuerza explosiva del sujeto. Si no fuera así,

dependerían de otros factores como por ejemplo, la habilidad o técnica de amortiguar

correctamente o variables de cineantropometría.

4.4.2.2.- Sujetos

Se usaron para el estudio los registros de 383 aspirantes a ingresar en una

facultad de Ciencias del Deporte de España, resultado de la suma de dos años

consecutivos (2005 y 2006) que fueron tratados conjuntamente ya que el objetivo no era

observar diferencias entre años. De ellos 291 eran hombres y 92 mujeres, con las

características descriptivas que se muestran en la Tabla 4.4.

Mujeres Hombres

Edad (años) 19.2 (2.6) 19.6 (2.8)

Estatura (cm) 164.3 (5.9) 174.9 (5.9)

Masa (kg) 57.2 (7.1) 71.0 (8.6)

Tabla 4.4: Variables descriptivas de la muestra estudiada.

103

Page 116: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

Biomecánica del vendaje funcional de tobillo

4.4.2.3.- Tests

Para medir las variables de los saltos se usó una plataforma de fuerzas

piezoeléctrica portable Quattro Jump (Kistler, Suiza) conectada a un ordenador en el

que se recogían los registros de fuerza, con una frecuencia de muestreo de 500 Hz;

frecuencia igual a la que utilizan Ozguven y Berme (1988) y Hopper y cols. (1999) en

estudios donde se analizaron las fuerzas de reacción en saltos y amortiguaciones.

Probablemente esta frecuencia no sea la óptima pero las características de la situación

en que se recogieron los datos no permitían usar la plataforma de fuerzas del Estudio 1,

la cual si puede registrar 1000 Hz, frecuencia ideal para el análisis de impactos en

amortiguaciones de caída.

Los sujetos realizaron el test de salto con contramovimiento (Countermovement

Jump = CMJ), sobre la plataforma de fuerzas. Las manos debían permanecer en la

cintura durante todo el salto (batida, vuelo y amortiguación) y se dejó libre el ángulo de

flexión de rodillas en el contramovimiento. Los sujetos, que conocían previamente a la

fecha de la prueba el test que iban a realizar, recibieron la instrucción de que debían

caer en una posición similar a la del despegue. No se les dio ninguna otra instrucción

referente a la amortiguación y, finalmente, antes del calentamiento, el investigador

realizó delante de los sujetos una demostración del test. Cada sujeto disponía de dos

intentos para superar unos mínimos de altura preestablecidos (29 cm en hombres y 21

cm en mujeres). Si no conseguían el mínimo en el primer intento realizaban, tras un

minuto, un segundo salto. En estos casos, en los que hubo dos intentos, se analizó el de

mayor altura de salto.

104

Page 117: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

Metodología

4.4.2.4.- Variables

Se estudió mediante el tiempo de vuelo la altura a la que se elevaba el centro de

gravedad (h). Respecto a la batida: el pico de potencia (Peak Power = PP) y respecto a

la amortiguación de la caída: el segundo pico de fuerza (F2), el instante en el que

sucedía F2 (T2), el ratio entre F2 y h (F2/h) y el tiempo desde el inicio de contacto con

el suelo hasta que se cruzaba por primera vez el valor del peso en la gráfica de fuerza-

tiempo (Time Body Weight = TBW). Durante la amortiguación también se estudió, en el

instante de tocar el suelo, cuánto más bajo se encontraba el centro de gravedad respecto

del instante del despegue (Height of Landing = hl) y el descenso del centro de gravedad

desde el inicio de la amortiguación hasta el punto más bajo (Landing Range = Lr). Los

valores de hl y Lr se utilizaron normalizados con la estatura del sujeto.

4.4.2.5.- Estadística

Se utilizó un análisis de la varianza de una vía (ANOVA) para analizar las

diferencias entre grupos.

El número mínimo de sujetos necesario con una potencia estadística de 0.9 y un

nivel de significación α de 0.05 fue calculado en 45, considerando las diferencias de

sexo en F2. Se obtuvo una potencia estadística con los 383 sujetos superior a 0.99, con

un error alfa bilateral de 0.05.

105

Page 118: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

Biomecánica del vendaje funcional de tobillo

4.4.3- Estudio 3: Diferencias de sexo en la fuerza de reacción del suelo en seis tipos

de amortiguación

4.4.3.1.- Propósito

El objetivo de este estudio fue analizar comparativamente en dos grupos

(hombres y mujeres) seis tipos de amortiguaciones de caídas sobre una plataforma de

fuerzas; cuatro partiendo desde una superficie elevada a 0.75 m de altura y dos previo

salto desde el suelo. De esta manera se podría saber cómo influye en hombres y mujeres

la altura y el tipo de amortiguación y si en un estudio aplicado en el que se usasen

amortiguaciones de caídas convendría estudiar de forma separada a los hombres y las

mujeres.

4.4.3.2.- Sujetos

Participaron voluntariamente en el estudio 15 mujeres y 15 hombres físicamente

activos, con las características descriptivas que se muestran en la Tabla 4.5.

Mujeres Hombres

Edad (años) 18.8 (1.0) 22.1 (2.3)

Estatura (cm) 164.8 (7.1) 176.6 (6.2)

Masa (kg) 60.5 (5.7) 72.1 (6.2)

Tabla 4.5: Variables descriptivas de la muestra estudiada.

4.4.3.3.- Tests

Para la medición de la fuerza de reacción se utilizó una plataforma de fuerzas

piezoeléctrica Kistler 9281 CA (Kistler, Suiza), colocada bajo el pavimento sintético de

un polideportivo. Se usó una frecuencia de muestreo de 1000 Hz.

106

Page 119: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

Metodología

Se llevaron a cabo tres sesiones. En la primera, se tomaron las medidas de

cineantropometría. En la segunda se realizó una familiarización con los tests y en la

tercera se realizaron los tests de caídas. Entre estas dos últimas sesiones en ningún caso

pasó más de una semana.

Se tomaron las amortiguaciones en seis tipos diferentes de caídas: sin ayuda de

brazos (Without Upper Extremities = WUE), con ayuda de brazos (With Upper

Extremity = UE), saliendo a máxima velocidad (Start After Landing = SAL), previa a

un Drop Jump (Before a Drop Jump = BDJ), después de un Drop Jump (After Drop

Jump = DJ) y después de un salto con contramovimiento (After Countermovement jump

= CMJ). En los cuatro primeros tests, el sujeto partía desde una superficie elevada a

0.75 m, con los pies en el borde de la superficie, sobre la que daba un paso hacia delante

para caer encima de la plataforma de fuerzas, con ambos pies a la vez, no pudiendo

perder el equilibrio. En los aterrizajes UE y WUE se pidió a los sujetos que buscaran la

mayor amortiguación posible. Al realizar el Drop Jump (cayendo desde 0.75 m) se pidió

que alcanzaran la mayor altura tras el rebote y se tomaron las caídas previa (BDJ) y

posterior (DJ) al rebote. En el CMJ se pidió que realizaran un salto máximo realizando

la batida sobre la plataforma de fuerzas y por último en SAL el objetivo era salir hacia

delante lo más rápido posible (con la referencia de un cono colocado a 3 m). Así el

diseño contenía cuatro variantes de caídas desde 0.75 m, con diferentes objetivos

(WUE, UE, BDJ y SAL) (Figura 4.11) y dos de caídas de saltos en los que se había

partido del suelo (DJ y CMJ).

107

Page 120: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

Biomecánica del vendaje funcional de tobillo

FASE DE VUELO

WUE

UE

SAL

BDJ

FASE DE AMORTIGUACIÓN

1 2 3

4 5 6

Figura 4.11: Instantes clave de la amortiguación y la fase previa en los cuatro tests en los que que se caía desde 0.75 m (4 = primer instante de contacto con el suelo; 5 = posición más baja del centro de gravedad durante la amortiguación, excepto en el test SAL, que se corresponde con el primer instante de perdida de contacto del pie con la plataforma de fuerzas; 6 = posición final; WUE = amortiguación sin ayuda de brazos; UE = amortiguación con ayuda de brazos; BDJ = amortiguación antes del Drop Jump; SAL = salida después de la amortiguación).

El orden de los tests se estableció de forma aleatoria en cada sujeto. Se

realizaron tres ensayos correctos de cada test y se analizó el mejor, según el criterio del

objetivo buscado en cada uno. Se consideró como mejor amortiguación la que tenía

menores valores de F2, mejor salto el que tenía mayor tiempo de vuelo y mejor salida la

que tenía menor tiempo de contacto en la plataforma.

4.4.3.4.- Variables

Se consideró durante la amortiguación: el segundo pico de fuerza (F2) registrado

en veces el peso corporal (Body Weights = BW), el instante en el que sucedía F2 (T2) y

el ratio entre F2 y T2 (F2 / T2), así como el tiempo desde el inicio de contacto con el

suelo hasta que el valor de las fuerzas de reacción verticales cruzaban por primera vez el

peso del sujeto (TBW). En el caso del DJ y del CMJ se registró también la altura del

108

Page 121: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

Metodología

salto a partir del tiempo de vuelo (Ecuación 4.3) y en SAL se registró el tiempo de

contacto con la plataforma de fuerzas.

h = g. t

8

2

Ecuación 4.3: Ecuación utilizada para calcular la altura del salto a partir del tiempo de vuelo (h=altura del salto; g=aceleración de la gravedad; t=tiempo de vuelo)

4.4.3.5.- Estadística

La reproducibilidad de las principales variables fue determinada por el cálculo

del coeficiente de correlación intraclase (ICC) y el error típico basado en la medición de

tres ensayos de cada variable (Hopkins 2000). Se utilizó una ANOVA de dos factores 2

× 6 (sexo × tipo de amortiguación) para F2, T2, the ratio F2/T2 and TBW y una

ANOVA de dos factores 2 × 2 (sexo × tipo de amortiguación) para la altura del salto en

las pruebas donde había un salto previo (ADJ y CMJ). Se usó como análisis post hoc el

proceso Scheffé.

El número mínimo de sujetos necesario con una potencia estadística de 0.9 y un

nivel de significanción α de 0.05 fue calculado en 14, considerando las diferencias de

sexo en F2 de WUE. Se obtuvo una potencia estadística con los 30 sujetos de 0.99, con

un error alfa bilateral de 0.05.

109

Page 122: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

Biomecánica del vendaje funcional de tobillo

4.5.- ESTUDIOS APLICADOS

A continuación se exponen los dos estudios aplicados que configuran esta memoria

detallando en cada uno: el propósito, las características de los sujetos participantes, los tests

realizados, las variables analizadas y la estadística que se llevó a cabo.

4.5.1- Estudio 4: Influencia del vendaje no elástico de tobillo en el equilibrio y el

salto

4.5.1.1.- Propósito

El objetivo de este estudio fue analizar la influencia del vendaje funcional

preventivo de tobillo (con prevendaje y vendas no elásticas) en dos tests de equilibrio y

un test de salto.

4.5.1.2.- Sujetos

Participaron 15 sujetos físicamente activos (siete hombres y ocho mujeres), con

las características descriptivas que se muestran en la Tabla 4.6.

Edad (años) 21.0 (4.4)

Estatura (cm) 172.1 (9.2)

Masa (kg) 71.1 (11.4)

Longitud pierna (cm) 87.5 (6.8)

Masa libre de grasa (kg) 59.6 (12.0)

Tabla 4.6: Variables descriptivas de los sujetos que realizaron el estudio.

4.5.1.3.- Tests

Cada sujeto realizó cuatro tests diferentes en dos situaciones: con vendaje (T) y

normal, sin vendaje (N). Los tests fueron: salto con contramovimiento (Figura 4.12),

110

Page 123: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

Metodología

equilibrio estático (Figura 4.13) y test de ajuste postural (Figura 4.14). El orden de

realización del test y el uso o no del vendaje se estableció en cada caso de forma

aleatoria.

Los tests de equilibrio (estático y ajuste postural) se realizaron sobre una

plataforma de fuerzas extensiométrica Dinascan 600 M (IBV, España). El CMJ se

realizó sobre una plataforma de fuerzas piezoeléctrica Quattro Jump (Kistler, Suiza). Se

usó la plataforma Quattro Jump para los tests de salto por haber sido empleada

previamente en el Estudio 2 con buenos resultados en su funcionamiento e idoneidad

para los tests de salto. Se usó una frecuencia de muestreo de 500 Hz en el salto y de 200

Hz en las pruebas de equilibrio. A continuación se describen los tests realizados:

Salto con Contramovimiento: El sujeto saltaba sobre la plataforma de fuerzas

llevando en todo momento las manos en la cintura. Se dejo libre el ángulo de flexión de

rodillas durante el contramovimiento. Se escogió el salto de mayor altura de tres

realizados correctamente. (Figura 4.12).

111

Page 124: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

Biomecánica del vendaje funcional de tobillo

Fuer

za (B

W)

Tiempo (s)

posición inicial despegue vuelo contacto posición final

Figura 4.12. Secuencia y gráfica de fuerza-tiempo de un salto con contramovimiento. Se muestran el primer (F1) y segundo pico (F2) en la fuerza de reacción vertical.

Equilibrio estático sobre apoyo monopodal: El sujeto debía mantener el

equilibrio, en apoyo sobre el pie derecho, manteniendo la otra extremidad con flexión

de rodilla y cadera de 90º, durante 15 s. Las manos debían permanecer sobre la cintura

durante todo el test. El objetivo de este test era que el centro de presiones oscilara lo

menos posible. Se cogió el mejor ensayo (menor área de barrido del centro de

presiones) de tres realizados correctamente (Figura 4.13).

112

Page 125: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

Metodología

Figura 4.13. Posición del sujeto (izquierda) y recorrido del centro de presiones durante el test de equilibrio estático (derecha).

Test de ajuste postural: El sujeto colocaba los pies quietos sobre unas marcas.

En una pantalla, frente al sujeto, se proyectaban ocho dianas que se iban iluminando de

forma aleatoria, con transiciones cada 4-6 s. El sujeto debía intentar llevar su centro de

presiones (que aparecía en la pantalla en frente suya) lo más rápido posible a la diana

que se iluminaba y mantenerlo dentro de la misma mientras estuviera iluminada. El test

tenía una duración de 40 s. Se cogió el mejor ensayo (mayor tiempo dentro de la diana

iluminada) de tres realizados correctamente (Figura 4.14).

113

Page 126: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

Biomecánica del vendaje funcional de tobillo

Figura 4.14. Posición del sujeto (izquierda) y representación del recorrido del centro de presiones (derecha) durante la realización del test de ajuste postural.

4.5.1.4.- Variables

Se analizó en el test de equilibrio estático el área barrida y la posición media del

centro de presiones; tanto en el eje antero-posterior (promedio X) como en el medio-

lateral (promedio Y). En el test de ajuste postural se tomaron la velocidad en pasar de

una diana a otra y el porcentaje de tiempo que se mantenía el sujeto dentro del círculo

iluminado (aciertos).

En el test de salto se tomó la altura del vuelo (h) y los picos de fuerza (PF) y

potencia (PP) durante la batida. Por otro lado, se analizó en la amortiguación de la caída

del salto el primer y segundo picos de fuerza vertical de reacción (F1 y F2), el instante

en el que sucedían (T1 y T2) y el tiempo desde el inicio de contacto con el suelo hasta

que el valor de la fuerza de reacción vertical cruzaba por primera vez el peso del sujeto

(TBW).

114

Page 127: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

Metodología

4.5.1.5.- Estadística

La reproducibilidad de las principales variables fue determinada por el cálculo

del coeficiente de correlación intraclase (ICC) y el error típico basado en la medición de

tres ensayos de cada variable (Hopkins 2000). Como prueba inferencial se utilizó el test

de Wilconxon para datos pareados.

El número mínimo de sujetos necesario con una potencia estadística de 0.9 y un

nivel de significación α de 0.05 fue calculado en 14, considerando las diferencias en F2

entre T y N halladas en un estudio piloto previo.

115

Page 128: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

Biomecánica del vendaje funcional de tobillo

4.5.2.- Estudio 5: Vendaje elástico vs no elástico

4.5.2.1.- Propósito

El propósito de este estudio fue: por un lado analizar la influencia de dos

vendajes funcionales preventivos de tobillo, uno realizado con vendas elásticas y otro

con no elásticas, en la fuerza de reacción vertical de la amortiguación de caídas (desde

0.30 m, desde 0.75 m y previo salto vertical) y en el rendimiento de los saltos (altura de

saltos verticales y pico de potencia durante la batida). Por otro lado, comparar la fatiga

de estos vendajes después de realizar 30 minutos de ejercicio intenso y contrastar estos

valores con la percepción que los sujetos tienen sobre la restricción y la comodidad de

los vendajes.

4.5.2.2.- Sujetos

Participaron 27 mujeres jóvenes, físicamente activas con las características

descriptivas que se muestran en la Tabla 4.7.

Edad (años) 20.6 (4.1)

Estatura (cm) 164.3 (6.2)

Masa (kg) 58.5 (7.0)

Longitud pierna (cm) 84.1 (4.0)

Longitud pie (cm) 19.2 (1.0)

AI 0.21 (0.05)

Masa libre de grasa (kg) 47.7 (4.9)

Tabla 4.7: Variables descriptivas de la muestra estudiada. (AI = Arch Index).

116

Page 129: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

Metodología

4.5.2.3.- Tests

Se realizaron los tests en tres situaciones: sin vendaje (N), con vendaje elástico

(ET) y con vendaje no elástico (IT). Tanto los tests como las situaciones se

establecieron de forma aleatoria en cada sujeto.

Los tests fueron: amortiguación de caída desde 0.75 m (L0.75), siguiendo los

mismos protocolos que en el Estudio 1, amortiguación de caída desde 0.30 m (L0.30)

(similar al anterior pero cayendo desde 0.30 m), salto con contramovimiento (CMJ),

siguiendo los protocolos descritos en el Estudio 2, y salto con aproximación (SCA) (con

tres pasos de aproximación se realizaba un salto vertical con ayuda de brazos). Los tres

primeros se hicieron con las manos en la cintura. En los dos primeros se le pedía al

sujeto que amortiguara todo lo posible, mientras que en el CMJ y SCA se buscaba la

mayor altura de salto realizando la batida y la amortiguación con los dos pies a la vez.

Se realizaron de cada test tres ensayos metodológicamente correctos. Para el análisis se

escogió en los tests de amortiguación los que menores fuerzas de reacción verticales

presentaban y en los tests de salto los de mayor altura (respetando así el criterio del

objetivo planteado en cada test).

Se midió el ROM en las restricciones y en la fatiga del vendaje con un

goniómetro manual (Alimed Inc, Dedham Mass) con sensibilidad de 2 mm. Se tomaron

en estático con el sujeto colocado en decúbito prono sobre una camilla la flexión,

extensión, supinación y pronación máximas pasivas del tobillo derecho. Se siguieron los

protocolos propuestos por Root (1991). Se realizaron estas mediciones en reposo, antes

y después de realizar los ejercicios los tres días de pruebas (N, IT y ET) y una vez

retirado el vendaje (tanto con el elástico, como con el no elástico) (Figura 4.15).

117

Page 130: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

Biomecánica del vendaje funcional de tobillo

DÍAS PREVIOS

- FAMILIARIZACIÓN- CINEANTROPOMETRÍA- FOTOPODOGRAMA- ROM SIN VENDAJE

DÍAS ALEATORIOS DE UNA MISMA SEMANA

DÍA X:VENDAJE

NO ELÁSTICO

DÍA Z:SIN VENDAJE

DÍA Y:VENDAJEELÁSTICO

1 2

A: ROM PRE-EJERCICIO CON VENDAJEB: 30 MINUTOS EJERCICIOC: ROM POST-EJERCICIO CON VENDAJED: ROM POST-EJERCICIO SIN VENDAJE

B: 30 MINUTOS EJERCICIO

A: ROM PRE-EJERCICIO

C: ROM POST-EJERCICIO

Figura 4.15: Diseño de la toma del rango de movimiento (ROM) en las diferentes sesiones del estudio.

En un día aparte, una vez se habían completado las tres sesiones, los sujetos

rellenaron una escala donde valoraban de 0 a 10 la restricción del vendaje (0 = mínima

restricción, 10 = máxima restricción) y su comodidad (0 = mínima comodidad, 10 =

máxima comodidad).

4.5.2.4.- Variables

Se analizó en los tests de salto: la altura a partir del tiempo de vuelo (h) y el pico

de potencia durante la batida (PP). En la amortiguación de la caída de todos los tests se

registraron: el segundo pico de fuerza (F2), el instante en el que sucedía (T2) y el

tiempo desde el inicio de contacto con el suelo (considerado a partir de que el valor de

la fuerza de reacción vertical superaba los 3 N) hasta que se cruzaba por primera vez el

valor del peso en la gráfica de fuerza-tiempo (TBW).

Se analizó el ROM en flexión, extensión, supinación y pronación máximas

pasivas del tobillo derecho.

118

Page 131: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

Metodología

Se analizaron los valores obtenidos en la escala que rellenaron los sujetos de

percepción de la comodidad y restricción de los vendajes.

4.5.2.5.- Estadística

La reproducibilidad de los ROMs fue determinada por el cálculo del coeficiente

de correlación intraclase (ICC) y el error típico basado en la medición de tres ensayos

de cada variable (Hopkins 2000).

Para el análisis del ROM, se usó una ANOVA de medidas repetidas de dos

factores 3 × 4 (situación × instante de medición) para cada uno de los movimientos del

tobillo derecho (flexión, extensión, supinación y pronación).

Para el análisis de la fuerza de reacción en los diferentes tests, se usó una

ANOVA para datos repetidos de dos factores 3 × 4 (situación × test) para las variables

de la amortiguación y otra ANOVA para datos repetidos de dos factores 3 × 2 (situación

× test) para las variables de la batida.

En ambos casos, cuando apareció alguna diferencia significativa, se usó como

análisis post hoc el proceso Scheffé.

El número mínimo de sujetos necesario con una potencia estadística de 0.9 y un

nivel de significación α de 0.05 fue calculado en 14, considerando la fatiga del vendaje

inelástico en la supinación. Se obtuvo una potencia estadística con los 27 sujetos de

0.99, con un error alfa bilateral de 0.05.

119

Page 132: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

Biomecánica del vendaje funcional de tobillo

120

Page 133: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

55.. RReessuullttaaddooss yy ddiissccuussiióónn

Page 134: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL
Page 135: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

Resultados y discusión

5.- RESULTADOS Y DISCUSIÓN

A continuación se van a describir los resultados y discusión, estudio por estudio,

comenzando por los tres estudios metodológicos y siguiendo por los dos aplicados.

5.1.- ESTUDIOS METODOLÓGICOS

5.1.1.- Estudio 1: Fuerzas de reacción del suelo en pies planos y cavos

Este estudio servirá para poner a punto varios tests con plataforma de fuerzas

con los que poder valorar patrones de movimientos por un lado y movimientos máximos

por otro. En segundo lugar servirá para conocer el comportamiento de morfologías de

pie extremas en estos tests.

5.1.1.1- Resultados

En las Tablas 5.1 y 5.2 se muestran las fuerzas verticales y anteroposteriores

registradas en pies cavos y planos en los tests de marcha y carrera. No se encontraron

diferencias significativas entre ambos grupos (pies cavos y planos extremos) en ninguna

de las variables.

PICO DE FRENADO

(BW)

VALLE (BW)

PICO DE ACELERACIÓN

(BW)

PICO DE FRENADO

(BW)

PICO DE ACELERACIÓN

(BW)

CAVOS 1.608 (0.022) 0.594 (0.031) 1.17 (0.05) 0.61 (0.03) 1.24 (0.07) - 0.26 (0.03) 0.29 (0.03)

PLANOS 1.609 (0.029) 0.618 (0.019) 1.21 (0.08) 0.60 (0.07) 1.18 (0.08) - 0.27 (0.04) 0.30 (0.03)

TODOS 1.609 (0.025) 0.607 (0.027) 1.19 (0.07) 0.60 (0.05) 1.21 (0.08) - 0.27 (0.03) 0.29 (0.03)

% DIF (C-P) 0.06 3.88 3.31 1.66 5.65 3.7 3.33

FUERZAS ANTEROPOSTERIORES

VELOCIDAD (m/s)

DURACIÓN APOYO

(s)

FUERZAS VERTICALES

Tabla 5.1.- Resultados en el test de marcha con los dos grupos estudiados; pies cavos (C) y planos (P).

123

Page 136: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

Biomecánica del vendaje funcional de tobillo

PICO DE FRENADO

(BW)

VALLE (BW)

PICO DE ACELERACIÓN

(BW)

PICO DE FRENADO

(BW)

PICO DE ACELERACIÓN

(BW)

CAVOS 3.017 (0.059) 0.282 (0.026) 1.6 (0.32) 1.35 (0.24) 2.38 (0.23) - 0.33 (0.06) 0.31 (0.04)

PLANOS 3.059 (0.059) 0.276 (0.025) 1.81 (0.22) 1.55 (0.26) 2.43 (0.20) - 0.33 (0.02) 0.28 (0.04)

TODOS 3.040 (0.061) 0.279 (0.025) 1.72 (0.28) 1.46 (0.26) 2.41 (0.21) - 0.33 (0.04) 0.30 (0.04)

% DIF (C-P) 1.37 1.77 11.6 12.9 2.06 0 9.67

FUERZAS VERTICALES FUERZAS ANTEROPOSTERIORES

VELOCIDAD (m/s)

DURACIÓN APOYO

(s)

Tabla 5.2.- Resultados en el test de carrera con los dos grupos estudiados; pies cavos (C) y planos (P).

Los resultados obtenidos en los tests máximos (cambio de dirección y

amortiguación de la caída) se muestran en las Tablas 5.3 y 5.4. Se han encontrado

diferencias significativas entre pies cavos y planos en dos variables; primero, en la

duración del apoyo en el cambio de dirección, siendo mayor el valor que presentaban

los pies planos (C = 0.300 s vs P = 0.374 s, p<0.01); en segundo lugar en el primer pico

de fuerza de la amortiguación de la caída, con valores superiores en los pies cavos (C =

5.78 BW vs P = 4.29 BW, p<0.05).

CAVOS 2.468 (0.122) 0.300 (0.042) 2.79 (0.76) 1.63 (0.52)

PLANOS 2.467 (0.167) 0.374 (0.044) 2.47 (0.59) 1.44 (0.56)

TOTAL 2.468 (0.142) 0.339 (0.056) 2.62 (0.67) 1.53 (0.53)

% DIFERENCIA (C-P) 0.04 19.78 ** 2.65 12.26

PICO FUERZA RESULTANTE

(BW)

PICO FUERZA VERTICAL

(BW)

DURACIÓN CIRCUITO

(s)

TIEMPO APOYO (s)

Tabla 5.3: Resultados obtenidos en el test de cambio de dirección con los dos grupos estudiados; pies cavos (C) y planos (P) (** = p < 0.01).

124

Page 137: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

Resultados y discusión

TBW (s) 1º PICO FUERZA VERTICAL (BW)

2º PICO FUERZA VERTICAL (BW)

CAVOS 0.460 (0.136) 5.78 (1.29) 8.32 (1.76)

PLANOS 0.570 (0.188) 4.29 (0.81) 7.63 (1.40)

TODOS 0.519 (0.170) 4.99 (1.28) 7.95 (1.56)

% DIFERENCIA (C-P) 19.30 25.78 * 8.30

Tabla 5.4: Resultados obtenidos en el test de amortiguación de la caída con los dos grupos estudiados; pies cavos (C) y planos (P) (TBW = tiempo desde el inicio de contacto con el suelo hasta que se cruzaba por primera vez el valor el peso en al gráfica de fuerza-tiempo * = p<0.05).

5.1.1.2.- Discusión

Los valores obtenidos en los picos de frenado, valle y aceleración en la marcha y

la carrera (Tablas 5.1 y 5.2) han sido similares a los que dan diferentes autores

estudiando pies normales; en la marcha se describen entre 1.10-1.56 BW en el pico de

frenado, 0.6-0.78 BW en el valle y 1.00-1.35 BW en el pico de aceleración (Brostrom y

cols., 2002; Cairns y cols., 1986; Li y Hamill, 2002; Willson y cols., 2001; Plas y cols.,

1984; Redfern y cols., 2001). En la carrera los valores que encontramos en la

bibliografía oscilan desde 1.52 hasta 1.70 BW en el pico de frenado, valores en torno a

1.28 BW en el valle y desde 2.48 hasta 2.71 BW en el pico de aceleración (Challis,

2001; Kram y Powel, 1989; Munro y cols., 1985; White y cols., 2002). Tanto en la

marcha como en la carrera los resultados son análogos a los que hemos obtenido en este

estudio (Tablas 5.1 y 5.2).

En los patrones de movimiento (marcha y carrera) no han aparecido diferencias

en los picos de fuerza entre pies planos y cavos. Puede ser debido a adaptaciones que

realiza el sujeto para amortiguar esos picos, que a largo plazo se han relacionado con

125

Page 138: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

Biomecánica del vendaje funcional de tobillo

dolor, molestias y lesiones. Grampp y cols. (2000) comentan que puede haber

adaptaciones individuales en la forma de andar para reducir las presiones en

determinadas partes del pie. Un mecanismo parecido podría darse en las fuerzas de

reacción al caminar y correr. Los sujetos con pies con tendencia a recibir fuerzas

elevadas podrían modificar consciente o inconscientemente, como mecanismo de

protección, los patrones de marcha y carrera reduciendo el riesgo de lesión. Los sujetos

estudiados no presentaban lesiones previas, por lo que se podían haber dado estas

adaptaciones.

Los valores en los picos de fuerza en los tests máximos han sido superiores en

los pies cavos y, pese a que las diferencias solo han sido significativas en el primer pico

de fuerza de la amortiguación de la caída (C = 5.78 ± 1.29 BW y P = 4.29 ± 0.84 BW;

p<0.05) (Figura 5.1), pueden tener importancia ya que estos son movimientos que los

sujetos estudiados no están acostumbrados a realizar (los sujetos han sido sedentarios) y

por lo tanto no han desarrollado mecanismos de adaptación para disminuir esos picos de

fuerza.

0

2

4

6

8

10

12

F1 F2

Fuer

za (B

W)

Pies cavosPies planos

*

ns

Figura 5.1: Diferencias entre el grupo de pies planos y el de pies cavos en las fuerzas de reacción de la amortiguación de la caída ((F1 = primer pico de fuerza; F2 = segundo pico de fuerza; * = p<0.05; ns = diferencias no significativas)

126

Page 139: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

Resultados y discusión

Los tiempos de duración del apoyo en los tests máximos han sido superiores en

los pies planos, pero al igual que sucede en los picos de fuerza las diferencias solo han

sido significativas en la duración del apoyo en el cambio de dirección (C = 0.300 ±

0.042 s y P = 0.374 ± 0.044 s; p<0.01) (Figura 5.2), estos valores pueden ser debidos a

que los sujetos con pies planos tienen una mayor superficie que entra en contacto con el

suelo.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Tiempo apoyo TBW

Tiem

po (

s)

Pies cavosPies planos

**

ns

Figura 5.2: Diferencias entre el grupo de pies planos y el de pies cavos en la duración del apoyo del cambio de dirección y en el tiempo transcurrido desde el inicio del contacto con el suelo hasta que se cruzaba por primera vez el valor del peso en la gráfica de F-T en la amortiguación de la caída (TBW) (** = p<0.01; ns = diferencias no significativas).

Teniendo en cuenta las posibles adaptaciones que realizarían sujetos que reciben

fuerzas de reacción elevadas en relación a su estructura de pie, el riesgo de padecer

lesiones se vería incrementado en la iniciación deportiva, al realizar movimientos

nuevos a los que no están adaptados. Las diferencias significativas en este estudio se

encontraban justamente en los movimientos máximos, gestos a los que, por ser nuevos,

aún no se habían adaptado los sujetos estudiados, ya que eran sedentarios.

127

Page 140: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

Biomecánica del vendaje funcional de tobillo

Del grupo de los pies cavos, seis de los sujetos manifestaban padecer molestias o

dolor en los pies, sin embargo, ningún sujeto con pies planos manifestaba estos

síntomas. Sería interesante contemplar la posibilidad de realizar este estudio con

plataformas de presiones, donde posiblemente sí se encontrarían diferencias entre estos

dos tipos de pies, ya que si consideramos que las fuerzas son similares y la superficie de

contacto es menor en los pies cavos, consecuentemente, sus presiones serían mayores en

determinadas partes del pie. Ésta, posiblemente, sea una de las causas de los dolores que

manifestaban los sujetos con pies cavos.

En los tests máximos los pies cavos mostraron mayores valores en los picos de

fuerza mientras que los planos los mostraron en la duración de los apoyos, lo que

muestra el comportamiento cinético diferente de los sujetos con estos tipos de pie

extremo en cuanto a su morfología. Así, en los estudios aplicados de vendaje, si se usan

alguno de los tests máximos de este estudio y teniendo en cuenta que Meana (2002)

encontró que los sujetos con pies cavos fatigaban más el vendaje, consideramos que

deberían estudiarse por separado los casos de pies con tipologías extremas.

128

Page 141: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

Resultados y discusión

5.1.2.- Estudio 2: Diferencias de sexo durante la amortiguación de caídas en tests

de salto

Este estudio servirá para poner a punto una metodología de evaluación de tests

de salto y amortiguación mediante el análisis de las fuerzas de reacción verticales y

cuantificar hasta qué punto el sexo del grupo estudiado condiciona los resultados en

estos tests.

5.1.2.1.- Resultados

En la Tabla 5.5 se muestran los valores de las variables de la batida, vuelo y la

posición del centro de gravedad durante la amortiguación. Las mayores diferencias entre

hombres y mujeres se encontraron en la altura del salto (mujeres (M) = 25.61 cm vs

hombres (H) = 35.46 cm, p<0.001) y el pico de potencia (M = 39.85 W/kg vs H = 50.23

W/kg, p<0.001). Los valores fueron mayores en el grupo de los hombres. Sin embargo,

en la amortiguación de la caída las mujeres obtuvieron mayores desplazamientos del

centro de gravedad (M = 11.06% vs H = 10.43%, p<0.05).

PP (W/kg) h (cm) hl (%) Lr (%)

Todos 47.74 (7.02) 33.09 (5.99) 3.81 (1.92) 10.58 (2.51)

Hombres 50.23 (5.64) 35.46 (4.47) 3.78 (1.99) 10.43 (2.43)

Mujeres 39.85 (4.78) 25.61 (3.53) 3.88 (1.69) 11.06 (2.72)

% Diferencia 20.66 *** 27.78 *** 2.57 5.78 *

Tabla 5.5: Resultados obtenidos en las variables de la batida, vuelo y posición del centro de gravedad durante la amortiguación. (PP = pico de potencia alcanzado durante la batida; h = altura alcanzada por el centro de gravedad en el vuelo; hl = altura del centro de gravedad en el inicio de la amortiguación; Lr = desplazamiento del centro de gravedad desde el inicio de la amortiguación hasta el punto más bajo; * = p<0.05; *** = p<0.001; ns = no significativa; M = mujeres; H = hombres).

En la Tabla 5.6 se muestran los resultados obtenidos en las variables cinéticas de

la amortiguación. Las mayores diferencias entre hombres y mujeres se encontraron en

129

Page 142: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

Biomecánica del vendaje funcional de tobillo

F2; registrando los hombres mayores valores que las mujeres (M = 5.89 BW vs H =

7.51 BW, p<0.001). Por otro lado también se encontraron diferencias en T2 (M = 0.061

s vs H = 0.054 s, p<0.05), ratio F2/h (M = 23.10 BW/m vs H = 21.32 BW/m, p<0.05) y

TBW (M = 0.255 s vs H = 0.231 s, p<0.01), obteniendo las mujeres mayores valores

que los hombres.

T2 (s) F2 (BW) Ratio F2/h (BW/m) TBW (s)

Todos 0.056 (0.028) 7.12 (2.41) 21.75 (6.94) 0.237 (0.111)

Hombres 0.054 (0.030) 7.51 (2.38) 21.32 (6.63) 0.231 (0.118)

Mujeres 0.061 (0.022) 5.89 (2.06) 23.10 (7.74) 0.255 (0.080)

% Diferencia 12.59 * 21.54 *** 8.33 * 10.25 **

Tabla 5.6: Resultados obtenidos en las variables cinéticas durante la amortiguación de la caída del salto. (F2 = segundo pico de fuerza; T2 = instante en el que sucedía el segundo pico de fuerza; h = altura alcanzada por el centro de gravedad en el vuelo; TBW = tiempo desde el inicio de contacto con el suelo hasta que se cruzaba por primera vez el valor el peso en al gráfica de fuerza-tiempo; * = p<0.05; ** = p<0.01; *** = p<0.001; M = mujeres; H = hombres).

En las tablas 5.7, 5.8 y 5.9 se muestran las correlaciones entre las variables

analizadas en el conjunto de la población en el grupo de hombres y en el de mujeres

respectivamente. De todas ellas destacan las obtenidas entre F2 con T2 (rtodos = -0.63,

rmujeres = -0.65, rhombres = -0.61 y) (Figura 5), con Lr (rtodos = - 0.56, rmujeres = -0.59, rhombres

= -0.55 y) y con hl (rtodos = -0.50, rmujeres = -0.60, rhombres = -0.50).

130

Page 143: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

Resultados y discusión

h PP T2 F2 TBW Lr

PP 0.87 ***

T2 -0.32 ***

-0.17 **

F2 0.36 ***

0.27 ***

-0.63 ***

TBW -0.05 ns

-0.13 *

0.04 ns

-0.39 ***

Lr 0.04 ns

0.02 ns

0.29 ***

-0.56 ***

0.79 ***

hl -0.19 ***

-0.01 ns

0.68 ***

-0.50 ***

-0.10 ns

0.22 ***

Tabla 5.7: Correlaciones obtenidas en el conjunto de la población. (PP = pico de potencia alcanzado durante la batida; h = altura alcanzada por el centro de gravedad en el vuelo; F2 = segundo pico de fuerza; T2 = instante en el que sucedía el segundo pico de fuerza; TBW = tiempo desde el inicio de contacto con el suelo hasta que se cruzaba por primera vez el valor el peso en al gráfica de fuerza-tiempo; hl = altura del centro de gravedad en el inicio de la amortiguación; Lr = desplazamiento del centro de gravedad desde el inicio de la amortiguación hasta el punto más bajo; * = p<0.05; ** = p<0.01; *** = p<0.001; ns = no significativa).

h PP T2 F2 TBW Lr

PP 0.75 ***

T2 -0.41 ***

-0.09 ns

F2 0.28 **

0.15 ns

-0.65 ***

TBW 0.05 ns

-0.04 ns

-0.11 ns

-0.47 ***

Lr 0.15 ns

0.13 ns

0.30 **

-0.59 ***

0.86 ***

hl -0.30 **

0.12 ns

0.79 ***

-0.60 ***

-0.01 ns

0.26 *

Tabla 5.8: Correlaciones obtenidas en el grupo de mujeres. (PP = pico de potencia alcanzado durante la batida; h = altura alcanzada por el centro de gravedad en el vuelo; F2 = segundo pico de fuerza; T2 = instante en el que sucedía el segundo pico de fuerza; TBW = tiempo desde el inicio de contacto con el suelo hasta que se cruzaba por primera vez el valor el peso en al gráfica de fuerza-tiempo; hl = altura del centro de gravedad en el inicio de la amortiguación; Lr = desplazamiento del centro de gravedad desde el inicio de la amortiguación hasta el punto más bajo; * = p<0.05; ** = p<0.01; *** = p<0.001; ns = no significativa).

131

Page 144: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

Biomecánica del vendaje funcional de tobillo

h PP T2 F2 TBW Lr

PP 0.78 ***

T2 -0.24 ***

-0.06 **

F2 0.22 ***

0.11 ns

-0.61 ***

TBW 0.15 **

-0.00 ns

-0.04 ns

-0.32 ***

Lr 0.17 **

0.11 ns

0.28 ***

-0.55 ***

0.76 ***

hl -0.23 ***

0.01 ns

0.67 ***

-0.50 ***

-0.14 *

0.21 ***

Tabla 5.9: Correlaciones obtenidas en el grupo de hombres. (PP = pico de potencia alcanzado durante la batida; h = altura alcanzada por el centro de gravedad en el vuelo; F2 = segundo pico de fuerza; T2 = instante en el que sucedía el segundo pico de fuerza; TBW = tiempo desde el inicio de contacto con el suelo hasta que se cruzaba por primera vez el valor el peso en al gráfica de fuerza-tiempo; hl = altura del centro de gravedad en el inicio de la amortiguación; Lr = desplazamiento del centro de gravedad desde el inicio de la amortiguación hasta el punto más bajo; * = p<0.05; ** = p<0.01; *** = p<0.001; ns = no significativa).

5.1.2.2.- Discusión

Los valores encontrados en F2 ( F2todos = 7.12 ± 2.41 BW; F2mujeres = 5.89 ± 2.06

BW; F2hombres = 7.51 ± 2.38 BW) (Tabla 5.6) han sido superiores a los obtenidos por

otros autores que analizaban caídas desde alturas similares a las alcanzadas en el vuelo

por la población estudiada (htodos = 33.09 ± 5.99 cm; hmujeres = 25.61 ± 3.53 cm; hhombres

= 35.46 ± 4.47 cm). McNitt-Gray (1991, 1993), Self y Paine (2001) y Prapavessis y

McNair (1999) obtuvieron valores en F2 desde 4.16 hasta 4.51 BW en hombres jóvenes

activos, atletas recreacionales y un grupo de hombres y mujeres, respectivamente.

Cayendo desde alturas de 0.72 m, McNitt-Gray (1991, 1993) también obtuvo valores

inferiores en F2 que los medidos en el presente trabajo (F2 = 6.38 ± 1.7 BW). La

explicación de los valores superiores en F2 de los sujetos de nuestro estudio, podría

estar en que centraron su atención en alcanzar la máxima altura en el salto, descuidando

la correcta amortiguación, algo que parece normal en situaciones reales de test,

132

Page 145: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

Resultados y discusión

deportivas o de pruebas de ingreso como la estudiada. Aunque en la situación analizada,

no tuvimos capacidad de solicitar a los sujetos un nuevo intento en el que buscasen el

doble objetivo de saltar el máximo y amortiguar también al máximo, sería interesante

evaluar si F2 se reduciría significativamente en dicho caso sin menguar la altura del

salto, pues de ser así, se podrían planificar intervenciones que buscaran conseguir

amortiguaciones más blandas conservando la altura del salto.

Al contrario de lo esperado, las mujeres obtuvieron menores valores en el

segundo pico de fuerza vertical (Figura 5.3), lo que las situaría con un menor riesgo de

lesión desde un punto de vista cinético en la amortiguación de saltos máximos.

Asímismo, las mujeres retrasaban el impacto del talón con el suelo, tenían un mayor

recorrido del centro de gravedad durante la amortiguación (Figura 5.3) y mayores

valores en TBW, lo que nos lleva a pensar que su forma de amortiguar era diferente a la

de los hombres.

Figura 5.3: Diferencias entre el grupo de hombres y el de mujeres en el valor del segundo pico de fuerza vertical durante la amortiguación (F2) y el recorrido del centro de gravedad desde el instante de contacto con el suelo hasta el punto más bajo que se alcanzaba durante la amortiguación (Lr). (* = p<0.05; *** = p<0.001).

133

Page 146: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

Biomecánica del vendaje funcional de tobillo

Las diferencias encontradas en F2 entre el grupo de hombres y mujeres (Tabla

5.6 y Figura 5.3) coinciden con los resultados obtenidos por Hewett y cols. (1996), que

estudiando caídas de salto verticales con movimientos libres de los brazos, referían

mayores valores en los hombres, a los que los autores atribuían por ello un mayor riesgo

de lesión. En este sentido cabe destacar que, al igual que sucedía en el estudio de

Hewett y cols. (1996), el grupo de los hombres de nuestro estudio caía en sus saltos

desde una altura superior al de las mujeres (M = 25.61 ± 3.53 cm y H = 35.46 ± 4.47

cm, p<0.001) (Tabla 5.5) (Figura 5.4). Los resultados contrastan con lo que se esperaba

y con lo observado en otros estudios (Ford y cols., 2003; Kernozek y cols., 2005) donde

encontraron que las mujeres tenían mayores picos de fuerza en la amortiguación de

caídas. En este sentido cabe destacar que si se divide F2 por la altura desde la que se

realiza la amortiguación, que en este caso se corresponde con la altura de los saltos, los

resultados se invierten mostrando las mujeres mayores valores que los hombres (M =

23.10 ± 7.74 BW/m y H = 21.32 ± 6.63 BW/m, p<0.05).

Figura 5.4: Diferencias entre el grupo de hombres y el de mujeres en la altura del salto y en el pico de potencia durante la fase de batida. (*** = p<0.001).

134

Page 147: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

Resultados y discusión

Creemos que los resultados de este estudio podrían ser diferentes si la altura

desde la que se realizaba la amortiguación fuera mayor y la misma en ambos grupos.

Parece que en alturas elevadas, superiores a las alcanzadas en un salto vertical los

resultados se invierten. En el estudio de Ford y cols. (2003) ambos grupos cayeron

desde 31 cm y no se encontraron diferencias en las fuerzas de reacción. Sin embargo, en

el estudio de Kernozek y cols. (2005) ambos grupos cayeron desde una altura más

elevada, 60 cm, y en este caso las mujeres obtuvieron mayores valores en las fuerzas de

reacción que los hombres. En esta misma línea, en el Estudio 3 de la presente tesis,

encontramos que cuando el grupo de hombres y mujeres se dejaba caer desde una altura

forzada y similar (75 cm) las mujeres obtenían valores superiores a los hombres, por lo

tanto la altura desde la que se realiza la amortiguación parece tener una gran

importancia para establecer las diferencias de sexo en las fuerzas de reacción verticales.

En otro estudio de Hewett y cols. (2005) analizando exclusivamente a mujeres,

comprobaron que las que posteriormente sufrieron lesiones de ACL tenían una mayor

extensión de los miembros inferiores al inicio de la amortiguación, debido a que esta

posición incrementaba la tensión que tenía que soportar el ACL y con ello el riesgo de

lesión. En este estudio se podría ver reflejada esta extensión indirectamente a partir de

la altura del centro de gravedad al inicio de la amortiguación. Contrario al trabajo de

Hewett y cols. (2005), el grupo de los hombres aterrizó con una posición más elevada

del centro de gravedad (con los miembros inferiores más extendidos) aunque las

diferencias no fueron significativas (hlmujeres = 3.88 ± 1.69%; hlhombres = 3.78 ± 1.99%).

Hemos encontrado correlaciones negativas entre F2 y T2, tanto en el conjunto

de la población (r = -0.63; p < 0.001) (Figura 5.5) como en los grupos de hombres

135

Page 148: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

Biomecánica del vendaje funcional de tobillo

(r = -0.61; p < 0.001) y mujeres (r = -0.65; p < 0.001). Esto nos indica que retrasar el

instante en el que se da F2 reduce su valor. Otra posible forma de reducir este valor

sería alargando el tiempo de amortiguación, al utilizar un mayor recorrido del centro de

gravedad. Coincidiendo con esta idea, se han encontrado leves correlaciones negativas

entre F2 y Lr, tanto en el conjunto de la población estudiada (r = -0.56; p < 0.001),

como en los grupos de hombres (r = -0.55; p < 0.001) y de mujeres (r = -0.59; p <

0.001). Por otro lado, no se han encontrado correlaciones importantes entre las variables

de la amortiguación y la potencia de la batida o la altura de salto. Esto nos sugiere que

la técnica de amortiguación es más importante que la fuerza explosiva para reducir los

valores de F2. También se refuerza la importancia que tiene el enseñar a caer bien y

justificaría el aprendizaje y entrenamiento de una correcta técnica de amortiguación en

diferentes ámbitos, como la escuela o los centros de medicina deportiva.

F2 = 9.69 - 62.01 * T2r = -0.65, P < 0.001

0.00 0.02 0.04 0.06 0.08 0.10 0.12

T2 (s)

2

4

6

8

10

12

14

16

18

F2 (B

W)

Females

F2 = 11.73 - 79.70 * T2r = -0.61, P < 0.001

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10

T2 (s)

2

4

6

8

10

12

14

16

F2 (B

W)

BA o Males

Hombres Mujeres

Figura 5.5: Correlación entre el segundo pico de fuerza (F2) y el instante en el que sucedía (T2) en el grupo de los hombres (A) y en el grupo de las mujeres (B). (BW = veces el peso corporal).

El comportamiento cinético durante las batidas y las amortiguaciones de los

saltos de los hombres ha sido diferente al de las mujeres. Esto sugiere que, atendiendo a

la homogeneidad en la muestra, ambos grupos deberían ser estudiados de forma

independiente. La ausencia de relación entre las variables de la amortiguación y la

136

Page 149: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

Resultados y discusión

potencia mostrada en la batida indica que para reducir las fuerzas de reacción durante

amortiguaciones de saltos podría ser más importante la técnica utilizada que la potencia

de las extremidades inferiores. De este estudio nació la idea de estudiar

comparativamente hombres y mujeres en otros tests de amortiguación que no partieran

de un salto previo, sino de una caída desde una superficie elevada, por ver si se

mantienen las relaciones encontradas en este estudio.

137

Page 150: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

Biomecánica del vendaje funcional de tobillo

138

Page 151: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

Resultados y discusión

5.1.3.- Estudio 3: Diferencias de sexo en las fuerzas de reacción del suelo en seis

tipos de amortiguación

Este estudio servirá para perfeccionar la metodología de tests de amortiguación

(previo salto y desde superficies elevadas) ahondando en las diferencias entre sexos y en

las diferentes relaciones entre variables.

5.1.3.1.- Resultados

En un estudio piloto, llevado a cabo con cinco sujetos, el ICC fue muy alto para

todas las variables de la amortiguación (0.90-0.99). Los errores típicos en F2, T2, F1,

T1 y TBW fueron 0.30 BW, 0.001 s, 0.17 BW, 0.001 s y 0.025 s, respectivamente. El

error típico, expresado como coeficiente de variación (Hopkins, 2000) para cada

variable fue: F2 = 5.4%, T2 = 2.7%, F1 = 4.9%, T1 = 7.7% y TBW = 3.4%.

Los promedios, desviaciones estándar y ranking (posición de la media con

respecto al resto de tests) de las variables consideradas en los seis tests, se pueden ver

en la Tabla 5.10. Se encontraron diferencias significativas entre el grupo de hombres y

mujeres en F2 en las siguientes pruebas: WUE (M = 8.10 BW vs H = 6.14 BW, p<0.01),

UE (M = 7.01 BW vs H = 5.51 BW, p<0.05), BDJ (M = 8.15 BW vs H = 5.73 BW,

p<0.001) y SAL (M = 7.43 BW vs H = 5.48 BW, p<0.001). En T2 se obtuvieron

diferencias significativas en los tests de WUE (M = 0.037 s vs H = 0.042 s, p<0.05) y

SAL (M = 0.048 s vs H = 0.056 s, p<0.05). En el ratio entre F2 y T2 se obtuvieron

diferencias significativas de p<0.01 en WUE, BDJ y SAL y diferencias de p<0.05 en

UE, mientras que en el TBW las diferencias no fueron significativas.

139

Page 152: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

Biomecánica del vendaje funcional de tobillo

F2 (BW) T2 (s) Ratio F2/T2 TBW h (m)

Media (SD) RANKING Media (SD) RANKING Media (SD) RANKING Media (SD) RANKING Media (SD) RANKING

WUE 8.10 (1.42) 2 ** 0.037 (0.006) 6 * 229.96 (68.75) 1 ** 0.591 (0.125) 2 0.75

UE 7.01 (1.61) 4 * 0.039 (0.005) 4 187.38 (55.75) 3 * 0.593 (0.123) 1 0.75

BDJ 8.15 (1.77) 1 *** 0.038 (0.007) 5 224.22 (90.16) 2 ** 0.511 (0.117) 3 0.75

ADJ 6.50 (1.94) 5 0.047 (0.017) 3 172.00 (111.73) 4 0.336 (0.132) 5 0.29 (0.04) 1 ***

SAL 7.43 (1.58) 3 *** 0.048 (0.007) 2 * 160.55 (53.34) 5 ** 0.283 (0.051) 6 0.75

CMJ 5.26 (1.18) 6 0.055 (0.021) 1 127.07 (95.69) 6 0.383 (0.161) 4 0.27 (0.03) 2 ***

F2 (BW) T2 (s) Ratio F2/T2 TBW h (m)

Media (SD) RANKING Media (SD) RANKING Media (SD) RANKING Media (SD) RANKING Media (SD) RANKING

WUE 6.14 (1.62) 3 0.042 (0.007) 5 154.38 (57.48) 1 0.626 (0.118) 2 0.75

UE 5.51 (1.50) 5 0.043 (0.007) 4 136.78 (54.14) 3 0.659 (0.165) 1 0.75

BDJ 5.73 (1.60) 4 0.042 (0.005) 5 142.08 (48.75) 2 0.537 (0.076) 3 0.75

ADJ 6.63 (2.49) 1 0.055 (0.014) 2 135.16 (74.60) 5 0.369 (0.172) 5 0.43 (0.07) 1

SAL 5.48 (1.20) 6 0.056 (0.012) 1 104.57 (38.44) 6 0.317 (0.062) 6 0.75

CMJ 6.33 (2.51) 2 0.050 (0.011) 3 135.95 (64.67) 4 0.410 (0.134) 4 0.40 (0.05) 2

MUJERES

HOMBRES

Tabla 5.10: Promedios, desviaciones estándar y ranking (orden entre los 6 tests, de mayor a menor) de las variables estudiadas (F2 = 2º pico de fuerza; T2 = tiempo hasta F2; TBW = tiempo desde el comienzo de la amortiguación hasta que se cruza el valor del peso; h = altura desde la que se realizaba la caída o la que alcanzaba el centro de gravedad previamente a la caída, WUE = amortiguación sin ayuda de brazos; UE = amortiguación con ayuda de brazos; BDJ = amortiguación antes del Drop Jump; ADJ = amortiguación después del Drop Jump; SAL = salida después de la amortiguación; CMJ = Salto con contramovimiento; * = p<0.05 hombres vs. mujeres; ** = p<0.01 hombres vs. mujeres; *** = p<0.001 hombres vs. mujeres).

La ANOVA muestra una interacción para F2 (sexo × tipo de amortiguación),

con mayores picos de fuerza en el grupo de las mujeres en los tests cayendo desde 0.75

m, y mayores valores para los hombres en las amortiguaciones de los tests que partían

desde el suelo (p<0.001). T2 fue mayor en el grupo de los hombres (p<0.05) y en las

amortiguaciones desde 0.75 m (p<0.001). El grupo de los hombres consiguió mayores

alturas en los saltos que el grupo de las mujeres (p<0.001). Al comparar los valores de

F2 en los seis tests, sólo se encontraron diferencias significativas en el grupo de mujeres

(Tabla 5.11).

140

Page 153: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

Resultados y discusión

WUE UE BDJ ADJ SAL

WUE

UE *** (M)

BDJ * (M)

ADJ * (M) * (M)

SAL

CMJ *** (M) * (M) *** (M) * (M) *** (M)

Tabla 5.11: Diferencias significativas encontradas al comparar F2 en los seis tests (M = mujeres; WUE = amortiguación sin ayuda de brazos; UE = amortiguación con ayuda de brazos; BDJ = amortiguación antes del Drop Jump; ADJ = amortiguación después del Drop Jump; SAL = salida después de la amortiguación; CMJ = salto con contramovimiento; * = p<0.05; *** = p<0.001).

En ambos grupos se encontraron correlaciones significativas entre F2 y T2 en

los tests WUE (M: r = -0.55, p<0.05; H: r = -0.76, p<0.01), UE (M: r = -0.57, p<0.05;

H: r = -0.84, p<0.001), y SAL (M: r = -0.72, p<0.05; H: r = -0.59, p<0.05). En el grupo

de las mujeres, se observó una correlación negativa entre F2 y T2 en el test BDJ (r = -

0.62, p<0.05); en el grupo de los hombres, las mismas variables correlacionaron en los

tests ADJ y CMJ, r = -0.60 y r = -0.59, p<0.05, respectivamente.

En el conjunto de la población estudiada, la masa muscular, expresada como un

porcentaje de la masa total del sujeto, correlacionó significativamente con la altura del

salto en el test ADJ (r = 0.79, p<0.001) y en el test CMJ (r = 0.78, p<0.001). Hubo

correlaciones significativas entre la altura de los saltos en los tests ADJ y CMJ y los

valores de F2 en los tests de amortiguación desde 0.75 m (ADJ test: WUE: r = - 0.60;

BDJ: r = -0.65; SAL: r = -0.54, p<0.05 and CMJ test: WUE: r = - 0.59; BDJ: r = -0.70;

SAL: r = -0.53, p<0.05). lo que nos indica que en la amortiguación desde superficies

elevadas (0.75 m) los sujetos que tenían mayor fuerza explosiva mostraban menores

valores en F2.

141

Page 154: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

Biomecánica del vendaje funcional de tobillo

5.1.3.2.- Discusión

En los aterrizajes es fundamental el control de la amortiguación. Esto se vería

reflejado en la consecución de un patrón de movimiento que fuera reproducible. Los

coeficientes de variación obtenidos en el estudio piloto estuvieron entre 2.7% y 7.7%. Los

coeficientes de variación de F2 (5.4%) han sido inferiores a los registrados por Schot y

cols. (2002) (12-35%) estudiando a sujetos jóvenes, activos y sin lesiones. Creemos que

esto es debido al periodo de familiarización, que posiblemente en el estudio de Schot y

cols. (2002) no fuera el suficiente. Los deportistas deberían tener totalmente automatizado

el patrón de la caída para poder realizar amortiguaciones adecuadas y sin riesgo,

pudiéndose centrar en otros aspectos del juego. Aun así, hay numerosas situaciones reales

de juego en las que, debido a la incertidumbre de la acción, pueden aparecer factores que

incrementen el riesgo como, por ejemplo, una colisión inesperada en el vuelo.

Los picos de fuerza vertical y el instante en el que sucedían durante amortiguaciones

simétricas eran diferentes entre el grupo de hombres y el de mujeres. Cuando se organizaron los

valores de F2 desde el mayor al menor, el ranking resultante fue diferente en los hombres (BDJ

> WUE > SAL > UE > ADJ > CMJ) que en las mujeres (ADJ > CMJ > WUE > BDJ > UE >

SAL). El grupo de los hombres tuvo mayores valores en F2 (no significativos) en las

amortiguaciones después de un salto previo desde el suelo (ADJ y CMJ), donde la altura desde

la que se caía era menor. Esto fue probablemente debido a que los hombres tuvieron mayores

alturas de salto que las mujeres (p<0.001) en los tests de salto (Figura 5.6). No obstante, los

valores de F2 en el grupo de las mujeres fueron significativamente mayores en los tests de

amortiguación desde 0.75 m (WUE, p<0.01; UE, p<0.05; BDJ y SAL, p<0.001) (Figura 5.7).

En el presente estudio se incluyeron amortiguaciones desde 0.75 m como una forma de forzar el

movimiento de amortiguación y sus mecanismos para disipar las fuerzas de reacción.

142

Page 155: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

Resultados y discusión

0

0.1

0.2

0.3

0.4

0.5

0.6

ADJ CMJ

Altu

ra d

e sa

lto (m

)

Mujeres Hombres***

***

Figura 5.6: Diferencias entre el grupo de hombres y el grupo de mujeres en la altura del drop jump (ADJ) y del salto con contramovimiento (CMJ) (*** = p<0.001).

0

2

4

6

8

10

12

WUE UE BDJ ADJ SAL CMJ

F2 (B

W)

Mujeres Hombres

**

*

*****

ns ns

Figura 5.7: Diferencias entre el grupo de hombres y el grupo de mujeres en el valor del segundo pico de fuerza vertical (F2) (WUE = amortiguación sin ayuda de brazos; UE = amortiguación con ayuda de brazos; BDJ = amortiguación antes del Drop Jump; ADJ = amortiguación después del Drop Jump; SAL = salida después de la amortiguación; CMJ = Salto con contramovimiento; * = p<0.05; ** = p<0.01; *** = p<0.001).

143

Page 156: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

Biomecánica del vendaje funcional de tobillo

Las diferencias significativas halladas en los picos de fuerza de los diferentes

tests de amortiguación sugieren que las mujeres estuvieron más influenciadas por la

altura de la caída y por el tipo de amortiguación, mientras que los hombres pudieron

controlar mejor las diferencias en la altura desde la que se realizaba el test. Como en el

trabajo de Swartz y cols. (2005), no encontramos diferencias entre el grupo de hombres

y el de mujeres en las amortiguaciones de los tests de salto (ADJ y CMJ), aunque ha

habido estudios previos que han mostrado mayores picos de fuerza durante la

amortiguación en los hombres (Hewett y cols., 1996). En el presente estudio parece que

los grupos seguían una tendencia diferente que los jugadores de voleibol, hombres y

mujeres, de Hewett y cols. (1996), cuyos resultados estuvieron probablemente

condicionados por el entrenamiento previo de los sujetos. Los sujetos de nuestro estudio

fueron físicamente activos, pero ninguno de ellos estaba involucrado en un

entrenamiento regular. Se ha referenciado que las mujeres utilizan diferentes estrategias

que los hombres durante las amortiguaciones (Chappell y cols., 2002; Chappell y cols.,

2005; Yu y cols., 2005), y está demostrado que las mujeres atletas tienen un mayor ratio

de lesión que los hombres (Hewett, 2000).

El entrenamiento neuromuscular desciende el valor de las fuerzas de reacción

durante la amortiguación de caídas (Hewett y cols., 1996) y reduce la incidencia de

lesiones en mujeres atletas (Hewett y cols., 1999). Estos hallazgos están indirectamente

reflejados en nuestros datos, porque los sujetos que tuvieron mayores alturas de salto en

los tests ADJ y CMJ mostraron menores valores de F2 en las amortiguaciones desde

0.75 m (WUE, UE, BDJ y SAL). Esto parece establecer una relación entre la fuerza

explosiva de las extremidades inferiores y la habilidad para realizar amortiguaciones

suaves desde alturas elevadas, fortaleciendo la hipótesis de que una mayor tensión

144

Page 157: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

Resultados y discusión

muscular podría reducir los valores en las fuerzas de reacción verticales durante las

amortiguaciones. Nuestros resultados solo hacen referencia a las fuerzas de reacción

verticales, pero nos muestran un mayor riesgo de lesiones agudas o por acumulación de

impactos en mujeres jóvenes activas, aun sin considerar otros factores como la

cinemática y la activación muscular.

Otros estudios han descrito el mayor riesgo de lesión en el ACL durante

amortiguaciones en mujeres atletas, comparado con hombres de las mismas

características (Colby y cols., 2000; Malinzak y cols., 2001; Decker y cols., 2003; Ford

y cols., 2003; Hargrave y cols., 2003; Zazulak y cols., 2005). Estas diferencias hacen

referencia a la activación muscular, posición de los segmentos corporales durante

momentos clave en el movimiento de amortiguación, y características antropométricas.

Respecto a las fuerzas de reacción se podría pensar que su incremento podría repercutir

negativamente en la transmisión de mayores fuerzas a los ligamentos, sobre todo en

ciertos instantes en los que son más vulnerables (Pflum y cols., 2004). En este sentido,

las diferencias de sexo han aparecido solo en caídas desde alturas considerables. En

futuros trabajos debería cuantificarse si estas diferencias guardan relación con las

diferencias en fuerza explosiva de hombres y mujeres o con aspectos de su constitución

y biomecánica.

Considerando que las mujeres mostraban valores más elevados en las fuerzas de

reacción verticales en las amortiguaciones desde alturas elevadas (0.75 m), pensamos

que sería adecuado realizar intervenciones a diferentes niveles, escolares y adultos, para

conseguir reducir estos picos de fuerza, que a largo plazo podrían estar involucrados en

el origen de lesiones (Gerberich y cols., 1987; Dufek y Bates, 1991). En este sentido

145

Page 158: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

Biomecánica del vendaje funcional de tobillo

algunos autores han realizado intervenciones utilizando instrucciones (Prapavessis y

cols., 2003), feedback (Onate y cols., 2001), o entrenamientos específicos (Hewett y

cols., 1996) obteniendo todos ellos, tras breves periodos de tiempo, la reducción de las

fuerzas de reacción verticales una vez finalizada la intervención.

Se ha cuantificado el peso que tienen los miembros superiores en la

amortiguación de la caída, hallando la diferencia en F2 entre los tests WUE y UE. El

uso de los miembros superiores ha reducido el valor de F2 un 13.46% en Mujeres y un

10.26% en Hombres (Figura 5.8). Un correcto uso de los miembros superiores en la

amortiguación, que no siempre es posible en el deporte, puede ayudar a minimizar las

fuerzas de impacto y reducir el riesgo de lesión.

0

1

2

3

4

5

6

7

8

9

10

Mujeres Hombres

F2 (B

W)

WUE UE***

***

Figura 5.8: Diferencias en el valor del segundo pico de fuerza durante la amortiguación (F2) por la utilización de los miembros superiores (WUE = amortiguación sin ayuda de brazos; UE = amortiguación con ayuda de brazos; *** = p<0.001).

146

Page 159: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

Resultados y discusión

Las correlaciones obtenidas entre F2 y T2 en el conjunto de la población y en

ambos grupos por separado, han mostrado que si F2 sucede más tarde en el tiempo su

valor es menor, en concordancia con los resultados obtenidos por Hewett y cols. (2005),

Devita y Skelly (1991), Hewett (2000) y con el Estudio 2. Al contrario de cómo se

podía pensar, el valor de F2 no ha guardado relación con la altura desde la que se caía,

no obteniéndose correlaciones entre F2 y la altura de caída en los saltos que partían del

suelo (DJ y CMJ). Esto podría apoyar la idea de que una correcta técnica en la

amortiguación de la caída del salto, podría tener al menos la misma importancia que la

altura desde la que se cae, en la obtención de registros bajos de fuerzas de reacción

verticales durante el impacto de amortiguaciones de saltos.

En este estudio se ha observado que las características cinéticas de las

amortiguaciones desde alturas elevadas han sido diferentes en hombres y mujeres. Las

mujeres han sido más sensibles a los diferentes tipos de amortiguación, mostrando

mayores valores en los picos de fuerza cuando se realizaban amortiguaciones desde

alturas elevadas, mientras que los hombres han mostrados los mismos valores en los

tests previo salto y en los tests cayendo desde 0.75 m.

147

Page 160: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

Biomecánica del vendaje funcional de tobillo

148

Page 161: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

Resultados y discusión

5.2.- ESTUDIOS APLICADOS

5.2.1- Estudio 4: Influencia del vendaje no elástico de tobillo en el equilibrio y el

salto

Este estudio servirá para analizar la influencia del vendaje funcional preventivo

de tobillo en dos tests de equilibrio y un test de salto. Se ha utilizado un solo grupo (de

hombres y mujeres) debido a que otros autores han estudiado tests de equilibrio con un

solo grupo (Hertel y cols., 1996; Bennell y Goldie, 1994) y en otros estudios no han

encontrado diferencias entre sexo en este tipo de tests (Kitabayashi y cols., 2004).

También encontramos estudios que analizan la batida y amortiguación de saltos con

contramovimiento con un grupo de sujetos (hombres y mujeres) sin hacer referencia a

las diferencias de sexo, éste es el caso de Barceló (2004).

5.2.1.1.- Resultados

En un estudio piloto, llevado a cabo con seis sujetos, el ICC fue muy alto para

todas las variables (0.94-0.99). Los errores típicos en la altura del salto, valor de F2,

área recorrida por el centro de presiones en el test de equilibrio estático sobre apoyo

monopodal y en los aciertos del test de ajuste postural fueron 0.16 cm, 0.11 BW, 7.37

cm2 y 2.47%, respectivamente. El error típico, expresado como coeficiente de variación

(Hopkins, 2000) para cada variable fue: altura de salto = 0.7%, F2 = 2.2%, área barrida

= 9.9% y aciertos = 3.5%.

En las Tablas 5.12 y 5.13 se muestran los promedios, desviaciones estándar, %

de diferencia y nivel de significación de las variables estudiadas en los tests de

equilibrio y salto, respectivamente. Sólo se han encontrado diferencias significativas en

el promedio de X en el test de equilibrio estático (N = 40.19 cm vs T = 43.42 cm,

149

Page 162: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

Biomecánica del vendaje funcional de tobillo

p<0.05) y en los valores de F2 en la amortiguación de la caída (N = 5.38 BW vs T =

6.04 BW, p<0.05), en ambos casos han obtenido valores superiores los sujetos con el

tobillo vendado.

Tiempo (s) Aciertos (%) Promedio X (cm) Promedio Y (cm) Area (cm2)

N 2.125 (0.273) 60.00 (10.89) 40.2 (5.1) -30.3 (19.0) 88.17 (50.09)

T 2.284 (0.271) 60.23 (11.90) 43.4 (6.9) -27.1 (17.9) 91.14 (38.88)

% diferencia 7.55 0.37 8.05 * 10.60 3.36

TESTS DE EQUILIBRIO

Ajuste postural Equilibrio estático

Tabla 5.12: Diferencias entre las condiciones estudiadas (sin vendaje vs con vendaje) en el rendimiento de los tests de equilibrio (N = sin vendaje, T = con vendaje de tobillo, * = p<0.05).

PF (BW) PP (W/kg) h (cm) F1 (BW) F2 (BW) T1 (s) T2 (s) TBW (s)

N 2.48 (0.23) 46.92 (9.90) 0.33 (0.10) 2.49 (0.94) 5.38 (1.61) 0.017 (0.009) 0.057 (0.023) 0.350 (0.169)

T 2.52 (0.29) 45.82 (8.18) 0.32 (0.10) 2.41 (1.22) 6.04 (1.87) 0.013 (0.005) 0.052 (0.019) 0.327 (0.143)

% diferencia 1.37 2.35 0.98 3.28 12.35 * 23.62 6.43 16.88

TEST DE SALTO

Fase de batida Fase de amortiguación

Tabla 5.13: Diferencias entre las condiciones estudiadas (sin vendaje vs con vendaje) en el salto con contramovimiento (N = sin vendaje; T = con vendaje de tobillo; PF = pico de fuerza vertical durante la batida; PP = pico de potencia durante la batida; h = altura del salto; F1 = valor del primer pico de fuerza durante la amortiguación; F2 = valor del segundo pico de fuerza; T1 = tiempo transcurrido desde el primer instante de contacto hasta F1; T2 = tiempo transcurrido desde el primer instante de contacto hasta F2; TBW = tiempo desde el comienzo de la amortiguación hasta que se cruza el valor del peso; * = p<0.05).

En la Tabla 5.14 se muestran las principales correlaciones entre las condiciones

sin vendaje y con vendaje. Se han encontrado correlaciones significativas en todos los

tests realizados excepto en el de ajuste postural. Hubo una correlación negativa entre F2

y T2 en las dos condiciones (T: r = -0.66, p<0.01; N: r = -0.58, p<0.05).

150

Page 163: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

Resultados y discusión

Tabla 5.14: Principales correlaciones encontradas entre los tests con vendaje y sin vendaje (área equilibrio estático = área barrida por el centro de presiones en el test de equilibrio estático; PF = pico de fuerza; PP = pico de potencia; h = altura del salto; F1 = valor del primer pico de fuerza durante la amortiguación; F2 = valor del segundo pico de fuerza durante la amortiguación; T1 = tiempo transcurrido desde el primer instante de contacto hasta F1; T2 = tiempo transcurrido desde el primer instante de contacto hasta F2; TBW = tiempo desde el inicio de contacto con el suelo hasta que el valor de las fuerzas de reacción cruzaban por primera vez el peso del sujeto; * = p<0.05; ** = p<0.01; *** = p<0.001).

Variable r

Area equilibrio estatico 0.80***

PF 0.73**

PP 0.92***

h 0.98***

F1 0.93***

F2 0.87***

T1 0.61*

T2 0.83***

TBW 1.00***

5.2.1.2.- Discusión

No se han encontrado disminuciones en el rendimiento por la utilización del

vendaje en los tests de equilibrio (Tabla 5.12). Estos resultados van en la línea de

autores como Hertel y cols. (1996) y Paris (1992), que no encontraban diferencias al

utilizar vendaje en tests de equilibrio estático. Otros autores como Bennell y Goldie

(1994) encontraban que el equilibrio empeoraba con vendaje. Por otro lado, Feuerbach y

Grabiner (1993) encontraron una mejora del equilibrio con vendaje. Esta discrepancia

en los resultados puede ser explicada por las diferentes posiciones en las que los sujetos

deben mantener el equilibrio mientras realizan los test. Por ejemplo, Bennell y Goldie

(1994), que encontraron diferencias con la utilización del vendaje, realizaban el test con

la pierna libre a 10 cm del suelo y con los ojos cerrados, una posición que puede ser

menos estable que la utilizada en nuestro estudio. Creemos que en la medida en que el

test aumente su dificultad va a ser más fácil que aparezcan diferencias. Por otro lado el

vendaje va a actuar de forma diferente en tests de equilibrio estático y dinámico. En los

tests estáticos, la presión que ejerce el vendaje en las diferentes estructuras del tobillo

puede influir en un mayor control y una mejora en el resultado del test aumentando la

propiocepción de la zona con la tensión ejercida por las tiras. Sin embargo, la limitación

151

Page 164: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

Biomecánica del vendaje funcional de tobillo

articular que ofrece el vendaje puede ser el factor que predomine en los peores

resultados obtenidos con vendaje en algunos de los tests de equilibrio dinámico. Las

diferencias encontradas en la posición media de X entre las situaciones T y N en el test

de equilibrio estático (p<0.05) muestran que el vendaje modificó la posición del centro

de presiones durante el test, lo que nos indica que pese a no encontrar diferencias en el

área recorrida por el centro de presiones en este test, el vendaje influyó en la alineación

de los segmentos durante la realización de la prueba.

Al contrario de lo registrado en estudios previos (Burks y cols., 1991; Mackean

y cols., 1995; Verbrugge, 1996) no ha habido descenso del rendimiento durante la fase

de batida en el salto. Los autores que han encontrado descenso en la altura de los saltos

con vendaje suelen analizar saltos tipo Abalakov, sin estandarizar los movimientos

previos de brazos, ni del resto del cuerpo. En nuestro estudio el sujeto partía de parado y

no podía realizar ningún movimiento previo al salto. Es posible que el vendaje tenga

una influencia diferente dependiendo del tipo de salto que estemos registrando. En este

sentido Barceló (2004) estudiando la influencia de tres tipos de vendaje, dos preventivos

y uno terapéutico, en la altura del salto con contramovimiento (similar al de nuestro

estudio), concluyó que los vendajes preventivos no influyeron en la altura del salto

mientras que el vendaje terapéutico sí produjo un descenso de la altura. La limitación

que puede producir el vendaje en los movimientos previos a la batida y la mayor

coordinación requerida podría condicionar una menor altura de salto en situaciones

reales de competición, y no en determinados tests, partiendo desde parado y sin usar las

extremidades superiores.

152

Page 165: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

Resultados y discusión

Se ha registrado un incremento de 0.66 BW en los valores de F2 en la

amortiguación de la caída del test de salto con vendaje (N = 5.38 ± 1.61 BW y T = 6.04

± 1.87 BW; p<0.05). Algunos autores han relacionado valores más altos en F2 con un

mayor riesgo de lesión (Dufek y Bates, 1991; hewett y cols., 2005; Louw y cols., 2006).

En las situaciones deportivas reales hay que estar atento a otros aspectos del juego

(compañeros, balón, choques,…) por lo que es fundamental tener automatizado el

movimiento de amortiguación para evitar picos de fuerza elevados durante las caídas

mientras los sujetos están centrando su atención en otros aspectos del juego. Hay que

tener en cuenta que en nuestro estudio los sujetos no habían usado nunca vendaje

funcional preventivo de tobillo y sería interesante estudiar también hasta qué punto los

sujetos acostumbrados al vendaje son capaces de minimizar o eliminar estos riesgos de

nuevas lesiones.

Las correlaciones encontradas entre las variables registradas con y sin vendaje

(Tabla 5.14) nos muestran que el vendaje funcional preventivo de tobillo tuvo la misma

influencia en todos los sujetos. Al igual que en los estudios anteriores destaca la

correlación negativa encontrada en la amortiguación de la caída, entre F2 y T2, tanto en

los tests realizados con vendaje (r = -0.66; p<0.01), como en los realizados sin vendaje

(r = -0.58; p<0.05). Esto nos indica que se registraron valores superiores de fuerza

cuando F2 se situó antes en el tiempo. Si al inicio de la amortiguación la musculatura

extensora (sobre todo la del tobillo) realiza un trabajo excéntrico importante, F2 se

retrasará en el tiempo, la musculatura absorberá parte del impacto y se reflejará en un

descenso de F2. Hay que señalar que muchos vendajes actúan también limitando el

grado de extensión del tobillo lo que puede ayudar a incrementar todavía más el valor

de F2.

153

Page 166: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

Biomecánica del vendaje funcional de tobillo

El vendaje funcional preventivo no elástico de tobillo no ha mostrado influencia

sobre el rendimiento en los tests de equilibrio y salto realizados. Sin embargo, la

utilización del vendaje podría conllevar un mayor riesgo de lesión durante la

amortiguación de la caída del salto, por incrementar el valor del segundo pico de fuerza.

154

Page 167: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

Resultados y discusión

5.2.2.- Estudio 5: Vendaje elástico vs no elástico

Este estudio se realiza teniendo en cuenta, por un lado, los resultados de puesta a

punto metodológica de los estudios previos, en los que las mujeres se han comportado

de forma más sensible frente a diferentes tipos de amortiguación (cambiando los

resultados según el test realizado) y, por otro lado, el estudio aplicado en el que el

vendaje no elástico no ha influido sobre los tests de equilibro, pero que posiblemente

tenga cierta influencia en la amortiguación de caídas posteriores a saltos desde el suelo.

Se ha decidido realizar este estudio, para estandarizar la muestra, con un grupo del

mismo sexo (mujeres) que no tuviera tipologías de pies extremas. En este último estudio

se analizó la influencia de dos vendajes funcionales preventivos de tobillo (elástico vs

no elástico) en varios tests de salto y amortiguación y se midió el efecto de la fatiga de

ambos vendajes tras someterse a 30 minutos de ejercicio intenso.

5.2.2.1.- Resultados

En un estudio piloto llevado a cabo con 13 sujetos, los ICC fueron muy altos en

todas las variables (0.89-0.98). Los errores típicos en la flexión dorsal, flexión plantar,

inversión y eversión fueron 0.85º, 0.96º, 0.87º y 0.85º, respectivamente. El error típico,

expresado como coeficiente de variación (Hopkins, 2000) para cada variable fue:

flexión = 6.7%, extensión = 1.6%, inversión = 3.5% y eversión = 10.6%.

Ambos vendajes produjeron una restricción en el movimiento de extensión y el

de inversión (p<0.001), mientras que no influyeron significativamente sobre el de

flexión ni el de eversión. En los dos vendajes aumentó el ROM tras el ejercicio; en la

extensión (IT =4.75º, p<0.05; ET = 3.70º, p<0.001) y en la inversión (IT = 5.00º,

p<0.05; ET = 4.37º, p<0.001) (Tabla 5.15). El vendaje no elástico se fatigó más que el

155

Page 168: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

Biomecánica del vendaje funcional de tobillo

elástico en la inversión (p<0.05). En la flexión plantar, pese a que el vendaje no elástico

tenía mayores valores en la fatiga la diferencia no fue significativa (p=0.25). En las

mediciones hechas sin vendaje al inicio y al final de las sesiones IT y ET, solamente en

la extensión se produjo un incremento significativo (p<0.01) en el ROM.

ELÁSTICO NO ELÁSTICO ELÁSTICO NO ELÁSTICO ELÁSTICO NO ELÁSTICO ELÁSTICO NO ELÁSTICO

1.- RESTRICCIÓN -1.52 -1.96 -7.30 *** -9.52 *** -15.04 *** -14.66 *** -0.44 -0.44

2.- FATIGA VENDAJE 0.74 1.41 3.70 *** 4.70 * 4.37 *** 5.70 * 0.59 0.22

3.- INICIO-FINAL 0.70 4.44 4.04 ** 1.28 ** 2.44 1.83 0.74 0.93

FLEXIÓN (º) EXTENSIÓN (º) INVERSIÓN (º) EVERSIÓN (º)

Tabla 5.15: Diferencias en grados en la flexión, extensión, supinación y pronación. Las situaciones que se compararon fueron: 1.- RESTRICCIÓN = medición previa al ejercicio sin vendaje – medición previa al ejercicio con vendaje; 2.- FATIGA VENDAJE = medición previa al ejercicio con vendaje – medición posterior al ejercicio con vendaje; 3.- INICIO – FINAL = medición previa al ejercicio sin vendaje – medición posterior al ejercicio sin vendaje. (* = p<0.05; ** = p<0.01; *** = p<0.001).

No se encontraron diferencias en los ROMs entre IT y ET en ninguna de las

situaciones, así como tampoco se encontraron diferencias en la comparación pre-

ejercicio y post-ejercicio sin vendaje, excepto en la extensión (p<0.05) (Tabla 5.16).

Familiarización Pre-ejercicio Post-ejercicio ET IT ET IT ET IT

FLEXIÓN (º) 17.89 (7.43) 18.40 (6.96) 18.89 (6.31) 16.37 (7.21) 15.93 (6.36) 17.11 (7.69) 17.33 (6.75) 18.59 (6.95) 18.89 (6.66)

EXTENSIÓN (º) 65.44 (8.22) 67.59 (7.80) 69.22 (8.58) * 58.15 (7.44) 55.93 (6.98) 61.85 (6.72) 60.63 (7.02) 68.59 (6.92) 68.74 (8.34)

INVERSIÓN (º) 36.00 (4.57) 36.67 (4.08) 37.48 (4.69) 20.96 (5.12) 21.33 (3.76) 25.33 (5.43) 27.04 (4.62) 38.44 (3.69) 37.85 (3.42)

EVERSIÓN (º) 13.93 (2.25) 14.15 (1.99) 14.22 (1.87) 13.48 (1.81) 13.48 (1.63) 14.07 (1.80) 13.26 (1.58) 14.66 (2.15) 13.93 (1.88)

SIN VENDAJE PRE-EJERCICIO CON VENDAJE POST-EJERCICIO CON VENDAJE POST-EJERCICIO SIN VENDAJE

Tabla 5.16: Rangos de movimiento, expresados en grados, de flexión, extensión, supinación y pronación (* = diferencias significativas p<0.05 comparando pre y post-ejercicio sin vendaje; ET = vendaje elástico; IT = vendaje no elástico).

En el análisis de las escalas de comodidad y restricción del vendaje los sujetos

puntuaron como más cómodo el vendaje elástico (IT = 5.10 y ET = 7.76, p<0.001), sin

156

Page 169: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

Resultados y discusión

embargo puntuaron mayor restricción en el vendaje no elástico (IT = 7.06 y ET = 3.70,

p<0.001) (Tabla 5.17).

VENDAJE NO ELÁSTICO VENDAJE ELÁSTICO

COMODIDAD 5.10 (1.75) *** 7.76 (1.25)

RESTRICCIÓN 7.06 (1.42) *** 3.70 (1.64)

Tabla 5.17: Percepción subjetiva de los sujetos en la utilización del vendaje (*** = diferencias significativas de p<0.001 al comparar vendaje no elástico con elástico).

No se encontraron diferencias en al altura del salto ni en el pico de potencia por

la utilización de los vendajes en ninguno de los dos tests de salto estudiados, excepto en

el pico de potencia del CMJ, en el que IT presentaba valores superiores a N (N = 37.15

W/kg vs IT = 38.93 W/kg, p<0.05) (Tabla 5.18). Comparando ambos tests de salto, se

registraron mayores alturas (p<0.001) y mayores PP (p<0.001) en el salto realizado con

aproximación que en el CMJ.

CMJ SCA

N ET IT N ET IT

h (m) 0.247 (0.044)

0.244 (0.043)

0.250 (0.045)

0.288 (0.046)

0.286 (0.050)

0.285 (0.050)

PP (W/Kg) 37,15 (6,75)

37,77 (6,27)

38,93 * (6,10)

46,13 (7,04)

45,85 (6,51)

45,08 (7,21)

PF (BW) 2.14 (0.23)

2.18 (0.24)

2.17 (0.23)

3.15 (1.03)

3.10 (0.88)

3.00 (0.88)

Tabla 5.18: altura del salto (h), pico de potencia (PP) y pico de fuerza (PF) en las diferentes situaciones registradas en el salto con contramovimiento (CMJ) y en el salto con aproximación (SCA) (N = sin vendaje; ET = vendaje elástico; IT = vendaje no elástico; * = diferencias de p<0.05 comparando vendaje no elástico respecto a la situación sin vendaje).

No se encontraron diferencias con la utilización de los vendajes en la

amortiguación de las caídas, ni en F2, ni en TBW en ninguno de los tests. Se

157

Page 170: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

Biomecánica del vendaje funcional de tobillo

encontraron diferencias en T2, con menores valores en IT respecto a N y ET, en L0.75

(p<0.001) y L0.30 (p<0.01) (Tabla 5.19). Sin embargo, no se encontraron diferencias

entre N y ET.

N ET IT N ET IT N ET IT N ET IT

F2 (BW) 7.60 (1.81)

7.74 (1.72)

7.73 (2.01)

3.94 (1.09)

3.96 (1.07)

4.10 (1.29)

4.79 (1.75)

4.80 (1.07)

4.69 (1.55)

5.01 (1.68)

5.37 (1.90)

4.95 (1.77)

T2 (s) 0.040 *** (0.006)

0.038 * (0.006)

0.036 (0.006)

0.051 ** (0.015)

0.049 * (0.014)

0.043 (0.011)

0.060 (0.023)

0.059 (0.016)

0.057 (0.018)

0.059 (0.023)

0.059 (0.019)

0.055 (0.020)

TBW (s) 0.594 (0.128)

0.556 (0.128)

0.593 (0.129)

0.564 (0.132)

0.592 (0.140)

0.598 (0.156)

0.392 (0.156)

0.390 (0.147)

0.402 (0.155)

0.412 (0.158)

0.397 (0.162)

0.420 (0.161)

L0.75 L0.30 CMJ SCA

Tabla 5.19: variables de la amortiguación de la caída en los tests: amortiguación desde 0.75 m (L0.75), amortiguación desde 0.30 m (L0.30), salto con contramovimiento (CMJ) y salto con aproximación (SCA) en las situaciones: sin vendaje (N), con vendaje elástico (ET) y con vendaje no elástico (IT) (F2 = segundo pico de fuerza; T2 = instante en el que sucedía el segundo pico de fuerza; *** = diferencias de p<0.001; ** = diferencias de p<0.01; * = diferencias de p<0.05). las diferencias son respecto a la situación de vendaje no elástico.

Al comparar los test entre sí aparecieron diferencias en F2, T2 y TBW (F2:

p<0.001; T2: p<0.001; TBW: p<0.001). En F2 se obtuvieron mayores valores en el test

L0.75 seguidos del salto con aproximación (L0.75 vs SCA = p<0.001), CMJ (L0.75 vs CMJ

= p<0.001) y L0.30 (L0.75 vs L0.30 = p<0.001), que fue en el test que menores valores de

F2 se obtuvieron (L0.30 vs CMJ = p<0.05; L0.30 vs SCA = p<0.001), sin embargo no se

encontraron diferencias significativas entre el CMJ y el salto con aproximación (p =

0.59). Los menores valores en T2 se registraron en L0.75 (L0.75 vs L0.30 = p<0.01; L0.75 vs

CMJ = p<0.001 y L0.75 vs SCA = p<0.001) y los mayores en el CMJ y el salto con

aproximación, siendo que entre el CMJ y el salto con aproximación no se encontraron

diferencias significativas (p=0.98). En TBW los resultados obtenidos en los tests donde

se buscaba la máxima amortiguación (L0.75 y L0.30) fueron similares pero superiores a

los registrados en los tests donde el objetivo se centraba en realizar un salto máximo

(p<0.001).

158

Page 171: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

Resultados y discusión

No se encontraron correlaciones destacables entre las variables de los ROM, ni

entre las variables antropométricas y los ROM. Se encontraron correlaciones entre F2 y

T2 (p<0.001) en los test donde el objetivo era amortiguar todo lo posible; tanto en la

situación N (L0.75: r = -0.71 y L0.30: r = -0.64), como en ET (L0.75: r = -0.63 y L0.30: r = -

0.53) y en IT (L0.75: r = -0.65 y L0.30: r = -0.71). También correlacionó el PP y h

(p<0.001) en la situación sin vendaje (CMJ: r = 0.66 y SCA: r = 0.75), como en ET

(CMJ: r = 0.66 y SCA: r = 0.66) y en IT (CMJ: r = 0.72 y SCA: r = 0.77).

5.2.2.2.- Discusión

Ambos vendajes cumplieron la función para la que habían sido confeccionados:

restringir la inversión (restricción del ROM: IT = 40.74% y ET = 41.77%, p<0.001) y la

extensión (restricción del ROM: IT = 14.54% y ET = 11.15%, p<0.001), dado que una

combinación de ambos movimientos se asocia al mecanismo más habitual de esguince

de tobillo (Rodríguez, 1998; Manonelles y Tárrega, 1998; Meana y cols, 2000). Sin

embargo, no influyeron en la flexión, ni la pronación. Que el vendaje limite su efecto a

los movimientos que se intenta restringir es importante para que minimice su posible

interferencia en la eficacia deportiva. Otros autores que han medido la influencia en la

restricción de los ROMs del tobillo con vendaje no elástico han obtenido valores

similares a los de nuestro estudio (Gehlsen y cols., 1991; Gross y cols., 1991;

Wilkerson, 1991; Greene y Hillman, 1990; Meana y cols., 2005).

Los dos vendajes mostraron después de los 30 minutos de ejercicio una menor

restricción en el ROM; tanto en la inversión (IT = 26.74 % y ET = 20.84%), como en la

extensión (IT = 8.41% y ET = 6.36%). Esto ya había sido obtenido por otros autores

respecto del vendaje no elástico (Alt y cols., 1999; Martin and Harter, 1993; Wilkerson,

159

Page 172: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

Biomecánica del vendaje funcional de tobillo

1991; Greene and Hilman, 1990; Gross y cols., 1991; Meana, 2008) pero es un hallazgo

de este estudio que suceda de forma parecida con el vendaje elástico. El vendaje no

elástico perdió mayor restricción que el elástico: en la supinación de forma significativa

(p<0.05) y en la extensión no significativa (p=0.25) (Figura 5.9). Esto puede deberse a

que el vendaje no elástico tiene un comportamiento diferente, mostrando la restricción

de forma brusca, como una barrera mecánica, a diferencia del elástico cuya restricción

aparecería progresivamente como una resistencia que va en aumento hasta llegar a la

barrera mecánica.

0

5

10

15

20

25

30

35

Inversion Extensión

Fatig

a de

l ven

daje

(%)

vendaje no elásticovendaje elástico*

Figura 5.9: Fatiga ocasionada por 30 minutos de ejercicio intensso en los dos tipos de vendaje (* = p<0.05).

A pesar de que los sujetos puntuaron como más cómodo y con menor restricción

el vendaje elástico (Figura 5.10) no se encontraron diferencias en los ROMs entre los

dos tipos de vendaje. En el estudio de Gross y cols. (1994b) también apareció una falta

de sincronía entre lo que percibían los sujetos y las mediciones en el ROM del tobillo al

160

Page 173: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

Resultados y discusión

comparar una ortesis de tobillo con un vendaje funcional preventivo no elástico. Tanto

la ortesis en el estudio de Gross y cols. (1994b) como el vendaje elástico en nuestro

estudio están confeccionados con material menos rígido, por lo que provocaban un tope

progresivo que se percibía como más cómodo y menos limitante por parte de los

sujetos.

0

1

2

3

4

5

6

7

8

9

10

Comodidad Restricción

perc

epci

ón d

e lo

s su

jeto

s

vendaje no elásticovendaje elástico

*** ***

Figura 5.10: Percepción subjetiva de los sujetos en la utilización del vendaje (*** = diferencias significativas de p<0.001 al comparar vendaje no elástico con elástico.

Solamente se produjo un incremento en la movilidad del tobillo pre-post

ejercicio sin vendaje en la extensión, probablemente debido a la ganancia de flexibilidad

en la articulación por el calentamiento de las diferentes estructuras. Sólo se registró

incremento en la extensión debido a que los ejercicios realizados en la sesión eran

principalmente saltos y amortiguaciones. Si el ejercicio hubiera incluido movimientos

de carrera con cambios de dirección bruscos, posiblemente se hubieran visto afectados

los movimientos laterales del tobillo. Alt y cols. (1999), tras 30 minutos de ejercicio

161

Page 174: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

Biomecánica del vendaje funcional de tobillo

registraron incrementos en la temperatura de la piel de 3.8 ºC en las sesiones sin vendaje

y entre 5.7 y 5.9 ºC en las sesiones realizadas con diferentes tipos de vendajes no

elásticos. Estos incrementos en la temperatura podrían justificar los incrementos en el

ROM que hemos encontrado en las situación post-ejercicio sin vendaje y una vez

retirados los vendajes. En nuestro estudio el ejercicio era de menor duración que el de

Alt y cols. (1999), sin embargo, todos los ejercicios realizados fueron máximos.

No se encontraron diferencias con la utilización de los vendajes ni en la altura

del salto, ni en el pico de potencia mecánica en la batida. Solamente el pico de potencia

de la batida en el CMJ fue mayor con el vendaje no elástico que sin vendaje (N = 37.15

± 6.75 W/kg y IT = 38.93 ± 6.10 W/kg, p<0.05). Posiblemente la utilización del vendaje

no elástico provocó modificaciones en las relaciones de fuerza y velocidad durante la

batida, quizás, aunque no fue medido, debido a las limitaciones en los ROMs dinámicos

que producía el vendaje durante el salto. No obstante este incremento en el pico de

potencia no se vio reflejado en una modificación de la altura del salto por lo que el

vendaje no condicionó un movimiento menos eficaz. Sacco y cols. (2004) no

encontraron diferencias significativas en el pico de fuerza durante la batida por la

utilización de un vendaje no elástico, aunque sí una tendencia a que los vendaje

incrementaran este valor.

Existe discrepancia entre autores respecto a si el vendaje puede o no disminuir la

capacidad de salto, aunque debemos destacar que todos los trabajos que hemos revisado

(Burks y cols., 1991; Paris, 1992; Mackean y cols., 1995; Verbrugge, 1996; Metcalfe y

cols., 1997) han utilizado el test de saltar y tocar, una prueba menos reproducible que

otros tests de salto y que presenta problemas metodológicos. Solo hemos encontrado un

162

Page 175: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

Resultados y discusión

trabajo (Barceló, 2004) que al igual que este estudio encontró que los vendajes

funcionales no influían en la altura del salto. Tanto en este estudio como en el de

Barceló (2004) es posible que tanto los protocolos de los tests, muy estandarizados,

como la metodología de medición (plataforma de fuerzas) permitieran unas mediciones

con menores variaciones debidas a aspectos externos.

La utilización de los vendajes no ha influido en F2 durante la amortiguación de

las caídas (Figura 5.11), al igual que les sucedió a Riemann y cols. (2002), y a Sacco y

cols. (2004), analizando amortiguaciones desde 0.6 m y previo salto. Sí se ha visto una

disminución en el valor de T2 por la utilización del vendaje no elástico, tanto en las

caídas desde 0.75 como desde 0.30 (Figura 5.12), resultados similares a los encontrados

por Riemann y cols. (2002) en amortiguaciones desde 0.60 m. Por otro lado, aunque sin

significación estadística, en SCA y en el CMJ también se vio una tendencia a la

disminución de T2 por la utilización del vendaje no elástico. La disminución de T2 se

ha visto en diferentes estudios que correlacionaba con incrementos en los valores del

segundo pico de fuerza en la amortiguación (Hewett y cols., 2005; Abián y cols., 2006),

de esta forma tener T2 menor suele implicar mayores valores en F2. Aunque en este

estudio no hemos encontrado valores superiores de F2 por la utilización de los vendajes

sí podrían verse incrementados estos valores en situaciones concretas al tener menor

tiempo para realizar la amortiguación.

163

Page 176: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

Biomecánica del vendaje funcional de tobillo

3

4

5

6

7

8

9

SCA CMJ

F2 (B

W)

Sin vendaje Vendaje elastico Vendaje no elástico

0.75L 0.30L

SITUACIONES:

Figura 5.11: Medias (± error estándar) del instante en el que sucedía el segundo pico de fuerza (T2) en los tests donde el objetivo era buscar la máxima amortiguación. (L0.75 = amortiguación desde 0.75 m; SCA = salto con aproximación; CMJ = salto con contramovimiento; L0.30 = amortiguación desde 0.30 m).

0.03

0.04

0.05

0.06

0.07

CMJ SCA

T2 (s

)

Sin vendaje Vendaje elástico Vendaje no elástico

*

***

*

**

SITUACIONES:

0.75L0.30L

Figura 5.12: Medias (± error estándar) del segundo pico de fuerza en la amortiguación de las caídas (F2) en los cuatro tests estudiados (CMJ = salto con contramovimiento; SCA = salto con aproximación; L0.30 = amortiguación desde 0.30 m; L0.75 = amortiguación desde 0.75 m; * = p<0.05; ** = p<0.01; *** = p<0.001).

164

Page 177: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

Resultados y discusión

En la amortiguación del CMJ y del SCA F2 fue mayor que en el test L0.30 pese a

que en estos dos saltos se caía desde alturas menores (hCMJ = 0.247 ± 0.044 m; hSCA

= 0.286 ± 0.047 m). Creemos que puede ser debido a que en L0.30 la atención se centraba

en amortiguar todo lo posible mientras que en los tests de salto el objetivo consistía en

alcanzar la máxima altura. Esto justificaría centrar la atención en la amortiguación de

caídas de saltos en el marco escolar y deportivo de ocio, para reducir el riego de

posibles lesiones. Sería especialmente importante realizarlo, con conceptos sencillos,

desde la infancia, momento más sensible para el aprendizaje. En este sentido ha habido

estudios como, por ejemplo, el de Prapavessis y cols. (2003) que redujeron F2 en

amortiguaciones desde 0.30 m después de cuatro sesiones, en las que se explicaba a los

alumnos donde debían centrar la atención durante las amortiguaciones.

De este estudio se desprende la recomendación preferente del uso del vendaje

elástico debido a que produce la misma limitación en el movimiento que el no elástico,

se fatiga menos, y ha sido percibido como más cómodo y menos restrictivo. Por otro

lado no ha modificado ningún aspecto biomecánico de los estudiados durante la batida y

la amortiguación, mientras que el vendaje no elástico ha cambiado la potencia durante la

batida del salto y ha adelantado la aparición del segundo pico de fuerza en la

amortiguación, lo que podría implicar en ciertas caídas amortiguaciones más duras.

Finalmente, ninguno de los dos vendajes analizados han afectado al rendimiento de

saltos y amortiguaciones, sin embargo han limitado los últimos grados de movimiento

del mecanismo más habitual de lesión del tobillo, por lo tanto estaría adecuada su

utilización (de ambos), como método preventivo en situaciones en las que un riesgo

elevado de lesión lo requiriera.

165

Page 178: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

Biomecánica del vendaje funcional de tobillo

166

Page 179: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

66.. CCoonncclluussiioonneess

Page 180: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL
Page 181: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

Conclusiones

6.- CONCLUSIONES

1. Los sujetos con pies cavos y planos extremos han tenido entre sí un

comportamiento cinético diferente en los tests máximos (cambio de dirección y

amortiguación de la caída). Mientras que en los patrones de movimiento (marcha y

carrera) el comportamiento ha sido similar en ambos grupos.

2. El comportamiento cinético durante las batidas y las amortiguaciones del test de

salto con contramovimiento de los hombres ha sido diferente al de las mujeres. El

grupo de mujeres mostró menores valores en el segundo pico de fuerza, mayor

recorrido vertical del centro de gravedad y un mayor tiempo desde el inico de

contacto del pie en el suelo hasta el impacto del calcáneo. Estos dos últimos

parámetros cinéticos se deberían tener en cuenta si queremos mejorar la técnica de

amortiguación e incidir en el descenso de las fuerzas de reacción durante las

amortiguaciones de caídas de saltos.

3. Las características cinéticas de las amortiguaciones cayendo desde superficie elevada

han sido diferentes en hombres y mujeres. Las mujeres han sido más sensibles a los

diferentes tipos de tests de amortiguación y han mostrado mayores valores en los

picos de fuerza. Estas características mostradas por el grupo de mujeres podrían

favorecer un mayor riesgo de lesión desde el punto de vista cinético.

4. La utilización del vendaje funcional preventivo no elástico de tobillo no ha tenido

influencia sobre el rendimiento en equilibrios: ni en el test estático monopodal, ni

en el test de ajuste postural.

5. La utilización del vendaje funcional preventivo no elástico de tobillo no ha tenido

influencia sobre el rendimiento en el test de salto. Sin embargo, ha incrementado el

valor del segundo pico de fuerza durante al amortiguación, con el posible riesgo

que esto puede conllevar.

169

Page 182: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

Biomecánica del vendaje funcional de tobillo

6. Ninguno de los dos vendajes analizados (elástico y no elástico) han afectado al

rendimiento de saltos y amortiguaciones en el grupo de mujeres jóvenes sin

lesiones previas estudiado. Por otro lado, han limitado los últimos grados de

movimiento del mecanismo más habitual de lesión del tobillo, por lo tanto estaría

recomendada su utilización, como método preventivo en situaciones en las que un

riesgo elevado de lesión lo requiriera.

7. En mujeres jóvenes sin lesiones previas, recomendamos utilizar el vendaje elástico

frente al no elástico debido a que produce la misma limitación en el movimiento

que el no elástico, se fatiga menos y es percibido como más cómodo y menos

restrictivo por parte de los sujetos. Además, no ha modificado ningún aspecto de la

biomecánica del tobillo de los estudiados, mientras que el no elástico ha cambiado

la potencia durante la batida del salto y ha adelantado la aparición del segundo pico

de fuerza en la amortiguación, lo que podría implicar en ciertas caídas

amortiguaciones más duras.

Perspectivas de futuro:

En futuros estudios sería interesante estudiar:

1. Introducir otras metodologías de medición, principalmente electromiografía y

cinemática, que pudieran ayudar a dar respuesta a algunas de las cuestiones que han

surgido en los estudios.

2. Evaluar los efectos de los vendajes (elástico y no elástico) sobre diferentes

poblaciones a la estudiada en este trabajo, incluyendo deportistas habituados a jugar

vendados y realizando también nuevos tests, diferentes a los empleados en este

estudio.

170

Page 183: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

77.. BBiibblliiooggrraaffííaa

Page 184: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL
Page 185: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

Bibliografía

7.- BIBLIOGRAFÍA

Abián J, Alegre LM, Lara AJ, Aguado X. (2006). Diferencias de sexo durante la

amortiguación de caídas en tests de salto. Archivos de Medicina del Deporte,

116: 441-50.

Allison GT, Hopper K, Martin L, Tillberg N, Woodhouse K. (1999). The influence

of rigid taping on peroneal latency in normal ankles. Australian Journal of

Physiotherapy, 45: 195-201.

Alt W, Lohrer H, Gollhofer A. (1999). Functional properties of adhesive ankle taping:

Neuromuscular and mechanical effects before and after exercise. Foot and Ankle

International, 20 (4): 238-245.

Alves JW, Alday RV, Ketcham DL, Lentell GL. (1992). A comparison of the passive

support provided by various ankle braces. Journal of Orthopaedic and Sports

Physical Therapy, 15 (1): 10-18.

Asociación Médica Mundial. (1964). Declaración de Helsinki. Principios éticos para

las investigaciones médicas en seres humanos. Helsinki.

Bahr R, Karlsen R, Lian O, Ovrebo RV. (1994). Incidence and mechanisms of acute

ankle inversion injuries in volleyball. The American Journal of Sports Medicine,

22 (5): 595-600.

Bahr R, Lian O, Bahr IA. (1997). A two fold reduction on the incidence of acute ankle

sprains in volleyball alter the introduction o fan injury prevention program: a

prospective cohort study. Scandinavian Journal of Medicine and Science in

Sports, 7:171-177.

Barceló O. (2004). Estudio biomecánico de la influencia del vendaje funcional de

tobillo sobre el rango de movimiento articular y sobre el rendimiento deportivo.

Tesis doctoral. Universidad Politécnica de Madrid.

173

Page 186: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

Biomecánica del vendaje funcional de tobillo

Bauer JJ, Fuchs RK, Smith GA, Snow CM. (2001). Quantifying force magnitude and

loading rate from drop landings that induce osteogenesis. Journal of Applied

Biomechanics, 17 (2): 142-152.

Bennell KL, Goldie PA. (1994). The differential effects of external ankle support on postural

control. Journal of Orthopaedic and Sports Physical Therapy, 20 (6): 287-295.

Berson BL, Rolinck A.M, Ramos CG, Thornton J. (1981). An epidemiologic study

of squash injuries. The American Journal of Sports Medicine, 9 (2): 103-106.

Bleak JL, Frederick CM. (1998). Superstitious behaviour in sport: levels of

effectiveness and determinants of use in three collegiate sports. Journal of Sport

Behavior, 21: 1-15.

Bové T. (2005). El vendaje funcional. Doyma, Barcelona.

Brizuela G, Llana S, Ferrandis R. (1996). Aspectos epidemiológicos del balonmano y

su relación con el calzado. Archivos de Medicina del Deporte, 13 (54): 267-274.

Bruns J, Scherlitz J, Luessenhop S. (1996). The stabilizing effect of orthotic devices

on plantar flexion dorsal extension and horizontal rotation of the ankle joint.

International Journal of Sports Medicine, 17 (8): 614-618.

Brynhildsen J, Ekstrand J, Jeppsson A, Tropp H. (1990). Previous injuries and

persisting symptoms in female soccer players. International Journal of Sports

Medicine, 11 (6): 489-492.

Burks RT, Bean BG, Marcus R, Barker HB. (1991). Analysis of athletic performance with

prophylactic ankle devices. American Journal of Sports Medicine, 19 (2): 104-106.

Bylak J, Hutchinson MR. (1998). Common sports injuries in young tennis players.

Sports Medicine, 26 (2): 119-132.

Cairns MA, Burdett RG, Pisciotta JC, Sheldon RS. (1986). A biomechanical analysis of

racewalking gait. Medicine Science in Sports and Exercise, 18 (4): 446-453.

174

Page 187: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

Bibliografía

Calais-Germain B. (1996). Anatomía para el movimiento, Tomo 1 (4º edición). Los

Libros de la Liebre de Marzo, Barcelona.

Camacho JL. Vendajes funcionales. (on line) http://webs.ono.com/usr000/nutridepor/

pagina_nueva_34.htm (Consulta: 21 de Abril de 2005).

Carroll MJ, Rijke AM, Perrin DH. (1993). Effect of the Swede-O ankle brace on talar

tilt in subjects with unstable ankles. Journal of Sport Rehabilitation, 2: 261-7.

Caulfield B, Garrett M. (2002). Functional instability of the ankle: differences in

patterns of ankle and knee movement prior to and post landing in a single leg

jump. International Journal of Sport Medicine, 23 (1): 64-68.

Cavanagh P, Rodgers MM. (1987). The arch index: a useful measure from footprints.

Journal of Biomechanics, 20 (5): 547-551.

Challis JH. (2001). The variability in running gait caused by force plate targeting.

Journal of Applied Biomechanics, 17: 77-83.

Chappell JD, Herman DC, Knight BS, Kirkendall DT, Garrett WE, Yu B. (2005).

Effect of fatigue on knee kinetics and kinematics in stop-jump tasks. The

American Journal of Sports Medicine, 33 (7): 1022-1029.

Chappell JD, Yu B, Kirkendall DT, Garrett WE. (2002). A comparison of knee

kinetics between male and female recreational athletes in stop-jump tasks. The

American Journal of Sports Medicine, 30 (2): 261-267.

Chaudhari AM, Hearn BK Andriacchi TP. (2005). Sport-dependent variations in arm

position during single-limb landing influence knee loading. The American Journal

of Sports Medicine, 33 (6): 824-830.

Colby S, Francisco A, Yu B, Kirkendall M Finch M, Garrett W. (2000).

Electromyographic and kinematic analysis of cutting maneuvers. Implications for anterior

cruciate ligament injury. The American Journal of Sports Medicine, 28 (2): 234-240.

175

Page 188: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

Biomecánica del vendaje funcional de tobillo

Corazza F, Leardini A, O’Connor JJ, Parenti Castelli V. (2005). Mechanics of the

anterior drawer test at the ankle: the effects of ligament viscoelasticity. Journal of

Biomechanics 38: 2118-2123.

Cordova ML, Armstrong CW, Rankin JM, Yeasting RA. (1998). Ground reaction

forces and EMG activity with ankle bracing during inversion stress. Medicine

Science in Sport and Exercise, 30 (9): 1363-1370.

Cordova ML, Cardona CV, Ingersoll CD, Sandrey MA. (2000). Long-Term ankle

brace use does not affect peroneus longus muscle latency during sudden inversion

in normal subjects. Journal of Athletic Training 35 (4): 407-11.

Cordova ML, Ingersoll CD, Palmieri RM. (2002). Efficacy of prophylactic ankle

support: an experimental perspective. Journal of Athletic Training, 37 (4): 446-457.

Cowling EJ, Steele JR, McNair PJ. (2003). Effect of verbal instructions on muscle

activity and risk of injury to the anterior cruciate ligament during landing. British

Journal of Sport Medicine, 37 (2): 126-130.

Cowling EJ, Steele JR. (2001). Is lower limb muscle synchrony during landing

affected by gender? Implications for variations in ACL injury rates. Journal of

Electromyography and Kinesiology, 11 (4): 263-8.

De Clercq LR. (1997). Ankle bracing in running: the effect of a push type medium ankle

brace upon movements of the foot and ankle during the stance phase. International

Journal of Sports Medicine, 18: 222-228.

Decker MJ, Torry MR, Wyland DJ, Sterett WI, Steadman JR. (2003). Gender

differences in lower extremity kinematics, kinetics and energy absorption during

landing. Clinical Biomechanics, 18 (7): 662-669.

Delacerda FG. (1978). Effect of underwrap conditions on the supportive effectiveness

of ankle strapping with tape. Journal of Sports Medicine, 18 (1): 77-81.

176

Page 189: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

Bibliografía

Devan MR, Pescatello S, Faghri P, Anderson J. (2004). A prospective study of

overuse knee injuries among female athletes with muscle imbalances and

structural abnormalities. Journal of Athletic Training, 39 (3): 263-267.

Devita P, Skelly WA. (1992). Effect of landing stiffness on joint kinetics and

energetics in the lower extremity. Medicine and Science in Sports and Exercise,

24: 108-115.

Dufek JS, Bates BT. (1991). Biomechanical factors associated with injury during

landing in jump sports. Sports Medicine, 12 (5):326-37.

Ebig M, Lephart SM, Burdett RG, Miller MC, Pincivero DM. (1997). The effect of

sudden inversion stress on EMG activity of the peroneal and tibialis anterior

muscles in the chronically unstable ankle. Journal of Orthopaedic and Sports

Physical Therapy, 26 (2):73-77.

Eils E, Demming C, Kollmeier G, Thorwesten L, Volker K, Rosenbaum D. (2002).

Comprehensive testing of 10 different ankle braces evaluation of passive and rapidly

induced stability in subjects with chronic ankle instability. Clinical Biomechanics, 17

(7): 527-535.

Ekstrand J, Gillquist J, Liljedahl SO. (1983) Prevention of soccer injuries: supervision by

doctor and physiotherapist. American Journal of Sports Medicine, 11:116-120.

Esparza F. (1993). Manual de cineantropometría. FEMEDE, Pamplona.

Fagenbaum R, Darling WG. (2003). Jump landing strategies in male and female

college athletes and the implications of such strategies for anterior cruciate

ligament injury. The American Journal of Sports Medicine, 31 (2):233-40.

Feuerbach JW, Grabiner MD, Koh TJ, Weiker GG. (1994). Effect of an ankle

orthosis and ankle ligament anesthesia on ankle joint propioception. The

American Journal of Sports Medicine, 22 (2): 223-229.

177

Page 190: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

Biomecánica del vendaje funcional de tobillo

Feuerbach W, Grabiner MD. (1993). Effect of the aircast on unilateral postural

control: amplitude and frequency variables. Journal of Orthopaedic and Sports

Physical Therapy, 7 (3): 149-154.

Firer P. (1990). Effectiveness of taping for the prevention of ankle ligament sprains.

British Journal of Sports Medicine, 24 (1): 47-50.

Fong DT, Hong Y, Chan L, Yung PS, Chan K. (2007). A systematic review on ankle

injury and ankle sprain in sports. Sports Medicine, 37 (1): 73-94.

Ford KR, Myer GD, Hewett TE. (2003). Valgus knee motion during landing in high

school female and male basketball players. Medicine and Science in Sports and

Exercise, 35 (10): 1745-1750.

Fridén T, Zatterstrom R, Lindstrand A, Moritz U. (1989). A stabilometric technique

for evaluation of coger limb instabilities. The American journal of Sports

Medicine, 17 (1): 118-122.

Fumich RM, Ellison AE, Guerin GJ, Grace PD. (1981). The measured effect of

taping on combined foot and ankle motion before and after exercise. The

American Journal of Sports Medicine, 9 (3): 165-170.

Funk JR, Hall GW, Crandall JR, Pilkey WD. (2000). Linear and quasi-linear

viscoelastic characterization of ankle ligaments. Journal of Biomechanical

Engineering, 122: 15-20.

Gabbett TJ. (2002). Incidence of injury in amateur rugby league sevens. British

Journal of Sports Medicine, 36 (1): 23-26.

Garrick JG, Requa RK. (1973). Role of external support in the prevention of ankle

sprains. Medicine and Science in Sports, 5 (3): 200-203.

Garrick JG, Requa RK. (1988). The epidemiology of foot and ankle injuries in sports.

Clinical Sports Medicine, 7 (1): 29-36.

178

Page 191: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

Bibliografía

Garrick JG. (1982). Epidemiologic perspective. Clinical Sports Medicine, 1 (1): 13-18.

Gehlsen GM, Pearson D, Bahamonde R. (1991). Ankle joint strength, total work, and

ROM: comparison between prophylactic devices. Journal of Athletic Training

1991, 26: 62-5.

Gerberich SG, Luhmann S, Finke C, Priest JD, Beard BJ. (1987). Analysis of

severe injuries associated with volleyball activities. Physician and Sports

Medicine, 15 (8): 75-79.

Gerrard DF, Waller AE, Bird YN. (1994). The New Zealand rugby injury and

performance project: II. Previous injury experience of a rugby-playing cohort.

British Journal of Sports medicine, 28 (4): 229-233.

González Iturri JJ, Fernández J, Commandre F, Cebeiro F. (1994). Estudio

retrospectivo sobre las lesiones en un club de fútbol: una temporada deportiva.

Archivos de Medicina del Deporte, 11: 35-40.

Gonzalez Iturri JJ. (1991). Tobillo y deporte: su recuperación tras la lesión ligamentosa.

En Rehabilitación y Deporte. IV Simposio de rehabilitación y medicina del deporte,

Monografías FEMEDE. Archivos de Medicina del Deporte, 139-149.

Grampp H, Willson J, Kermozek T. (2000). The plantar loading variations to umhill

and downhill gradients during treadmill walking. Foot and Ankle International, 21

(3): 227-231.

Gray J, Taunton JE, Mckenzie DC, Clement DB, McConkey JP. (1985). A survey

of injuries to the anterior cruciate ligament of the knee in female basketaball

players. International Journal of Sports Medicine, 6 (6): 314-316.

Greene TA, Hillman SK. (1990). Comparison of support provided by a semirigid

orthosis and adhesive ankle taping before, during, and after exercise. American

Journal of Sports Medicine, 18 (5): 498-506.

179

Page 192: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

Biomecánica del vendaje funcional de tobillo

Greene TA, Roland GC. (1989). A compartive isokinetic evaluation of a functional ankle

orthosis on talocalcaneal function. Journal of Orthopaedic and Sports Physical

Therapy, 11 (6): 245-52.

Greene TA, Wight CR. (1990). A comparative support evaluation of three ankle

orthoses before, during and after exercise. Journal of Orthopaedic and Sports

Physical Therapy, 11 (10): 453-66.

Gribble PA, Radel S, Armstrong CW. (2006). The effects of ankle bracing on the

activation of the peroneal muscles during a lateral shuffling movement. Physical

Therapy in Sport, 7: 14-21.

Gross MT, Everts JR, Roberson SE, Roskin DS, Young KD. (1994a). Effect of donjoy

ankle ligament protector and aircast sport-stirrup orthoses on functional performance.

Journal of Orthopaedic and Sports Physical Therapy, 19 (3): 150-6.

Gross MT, Batten AM, Lamm AL, Lorren JL, Stevens JJ, Davis JM, Wilkerson

GB. (1994b). Comparison of donjoy ankle ligament protector and subtalar sling

ankle taping in restricting foot and ankle motion before and after exercise. Journal

of Orthopaedic and Sports Physical Therapy, 19 (1): 33-41.

Gross MT, Bradshaw MK, Ventry LC, Weller KH. (1987). Comparison of support

provided by ankle taping and semirigid orthosis. Journal of Orthopaedic and

Sports Physical Therapy, 1987; 9 (1): 33-39.

Gross MT, Clemence LM, Cox BD, Mcmillan HP, Meadows AF, Piland CS,

Powers WS. (1997). Effect of ankle orthoses on functional performance for

individuals with recurrent lateral ankle sprains. Journal of Orthopaedic and

Sports Physical Therapy, 25 (4): 245-252.

Gross MT, Lapp AK, Davis M. (1991). Comparison of Swede-O-universal ankle

support and aircast sport-stirrup orthoses and ankle tape in restricting eversion-

180

Page 193: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

Bibliografía

inversion before and after exercise. Journal of Orthopaedic and Sports Physical

Therapy, 13 (1): 11-9.

Gruneberg C, Nieuwenhuijzen JA, Duysens J. (2003). Reflex responses in the lower

leg following landing impact on an inverting and non-inverting platform. Journal

of Physiology, 550 (3): 985-993.

Hals TM, Sitler MR, Mattacola CG. (2000). Effect of a semi-rigid ankle stabilizer on

performance in persons with functional ankle instability. Journal of Orthopaedic

and Sports Physical Therapy, 30 (9): 552-556.

Hals TV, Sitler MR, Mattacola CG. (2000). Effect of a semi-rigid ankle stabilizer on

performance in persons with functional ankle instability. Journal of Orthopaedic

and Sports Physical Therapy, 30 (9): 552-6.

Hargrave MD, Carcia CR, Gansneder BM, Shultz SJ. (2003). Subtalar pronation

does not influence impact forces or rate of loading during a single-leg landing.

Journal of Athletic Training, 38 (1): 18-23.

Hartsell HD, Spaulding SJ. (1997). Effectiveness of external orthotic support on

passive soft tissue resistance of the chronically unstable ankle. Foot and ankle

International, 18 (3): 144-150.

Heit EJ, Lephart SM, Rozzi SL. (1996). The effect of ankle bracing and taping on joint

position sense in the stable ankle. Journal of Sport Rehabilitation, 5 (3): 206-213.

Henry JH, Lareau B, Neigut D. (1982). The injury rate in professional basketball. The

American Journal of Sports Medicine, 10 (1): 16-18.

Hernández R. (1990). Morfología funcional deportiva. Información Servei de

Docencia e Investigación. V. II. Secretaría General de L´esport.

Herring SA. (1990). Rehabilitation of muscle injuries. Medicine and Science in Sports

and Exercise, 22 (4): 453-456.

181

Page 194: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

Biomecánica del vendaje funcional de tobillo

Hertel J. (2000). Functional instability following lateral ankle sprain. Sports Medicine,

29 (5): 361-371.

Hertel JN, Guskiewicz KM, Kahler DM, Perrin DH. (1996). Effect of lateral ankle

joint anesthesia on center of balance, postural sway, and joint position sense.

Journal of Sport Rehabilitation, 5 (2): 111-119.

Hewett TE, Lindenfeld TN, Riccobene JV, Noyes FR. (1999). The effect of

neuromuscular training on the incidence of knee injury in female athletes. The

American Journal of Sports Medicine, 27: 699-706.

Hewett TE, Myer GD, Ford KR, Heidt RS, Colosimo AJ, Mclean SG, Van Den

Bogert AJ, Paterno MV, Succop P. (2005). Biomechanical measures of

neuromuscular control and valgus loading of the knee predict anterior cruciate

ligament injury risk in female athletes. American Journal of Sports Medicine, 33

(4): 492-501.

Hewett TE, Stroupe AL, Nance TA, Noyes FR. (1996). Plyometric training in female

athletes. Decreased impact forces and increased hamstring torques. The American

Journal of Sports Medicine, 24 (6):765-73.

Hewett TE. (2000). Neuromuscular and hormonal factors associated with knee injuries

in female athletes. Sports Medicine, 29: 313-327.

Hodgson B, Tis L, Cobb S, Higbie E. (2005). The effect of external ankle support on

vertical ground-reaction force and lower body kinematics. Journal of Sport

Rehabilitation, 14: 301–312.

Holme E, Magnusson SP, Becher K, Bieler T, Aagaard P, Kjaer M. (1999). The

effect of supervised rehabilitation on strength, postural sway, position sense and

re-injury risk after acute ankle ligament sprain. Scandinavian Journal of Medicine

and Science in Sports, 9 (2):104–109.

182

Page 195: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

Bibliografía

Hopkins WG. (2000). Measures of reliability in sports medicine and science. Sports

medicine, 30: 1-15.

Hopper DM, McNair P, Elliott C. (1999). Landing in netball: effects of taping and

bracing the ankle. British Journal of Sports Medicine, 33 (6): 409-413.

Hubbard T, Kaminski T. (2002). Kinesthesia is not affected by functional ankle

instability status. Journal of Athletic Training, 37 (4): 481-486.

Hubbard TJ, Hertel J. (2006). Mechanical contributions to chronic lateral ankle

instability. Sports Medicine, 36 (3): 263-277.

Hughes LY, Stetts DM. (1983). A comparison of ankle taping and a semirigid support.

The Physician and Sportsmedicine, 11 (4): 99-103.

Hume PA, Gerrard DF. (1998). Effectiveness of external ankle support. Sports

medicine, 25 (5): 285-312.

Hunt E, Short S. (2006). Collegiate athletes’ perceptions of adhesive ankle taping: a

qualitative analysis. Journal of Sport Rehabilitation, 15 (4): 280-298.

James CR, Bates BT, Dufek JS. (2003). Classification and comparison of

biomechanical response strategies for accommodating landing impact. Journal of

Applied Biomechanics, 19 (2): 106-18.

Jones D, Louw Q, Grimmer K. (2000). Recreational and sporting injury to the

adolescent knee and ankle: Prevalence and causes. Australian Journal of

Physiotherapy, 46 (3):179-187.

Jurgen H, Asmussen PD. (1988). Técnicas de vendaje. Iatros, Santa fé de Bogotá.

Kain CC, McCarthy JA, Arms S. (1998). An in vivo analysis of the effect of transcutaneous

electrical stimulation of the quadriceps and hamstrings on anterior cruciate ligament

deformation. The American Journal of Sports Medicine, 16 (2): 147-152.

183

Page 196: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

Biomecánica del vendaje funcional de tobillo

Kaminski TW, Gerlach TM. (2001). The effect of tape and neoprene ankle supports

on ankle joint position sense. Physical Therapy in Sport, 2 (3): 132-140.

Kapandji IA. (1998). Fisiología Articular (Tomo 2). Editorial Médica Panamericana,

Madrid.

Karlsson J, Andreasson GO. (1992). The effect of external ankle support in chronic

lateral ankle joint instability. An electromyographic study. American Journal of

Sports Medicine, 20 (3):257-261.

Karlsson J, Andreasson GO. (1992). The effect of external ankle support in chronic

lateral ankle joint instability. An electromyographic study. The American Journal

of Sports Medicine, 20 (3): 257-261.

Karlsson J, Peterson L, Andreasson G, Hogfors C. (1992). The unstable ankle: a

combined EMG and biomechanical modeling study. International Journal of

Sport Biomechanics, 8:129–144.

Karlsson J, Sward L, Andreasson GO. (1993). The effect of taping on ankle stability.

Sports Medicine, 16 (3): 210-215.

Kernozek TW, Torry MR, Heather VH, Cowley H, Tanner S. (2005). Gender

differences in frontal and sagittal plane biomechanics during drop landings.

Medicine and Science in Sports and Exercise, 37 (6): 1003-1012.

Kimura IF, Nawoczenski KA, Epler M, Owen MG. (1987). Effect of the airstirrup in

controlling ankle inversion stress. Journal of Orthopaedic and Sports Physical

Therapy, 9 (5): 190-193.

Kinzey SJ, Ingersoll CK, Knight KL. (1997). The effects of selected ankle appliances

on postural control. Journal of athletic training, 32 (4): 300-303.

Kitabayashi T, Demura S, Noda M, Yamada T. (2004). Gender differences in body-

sway factors of center of foot pressure in a static upright posture and under the

184

Page 197: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

Bibliografía

influence of alcohol intake. Journal of Physiological Anthropology and Applied

Human Science, 23 (4): 111-118.

Kitaoka HB, Crevoisier XM, Harbst K, Hansen K, Kotajarvi B, Kaufman K. (2006).

The effect of custom-made braces for the ankle and hindfoot on ankle and foot

kinematics and ground reaction forces. Archives of Physical Medicine and

Rehabilitation, 87: 130-135.

Konradsen L, Ravn J B, Sorensen AI. (1993). Proprioception at the ankle: The effect

of anesthetic blockade of ligament receptors. Journal of Bone and Joint Surgery

(British), 75 (3): 433-436

Konradsen L, Ravn J. (1990). Ankle instability cuased by prolonged peronel raction

time. Acta Orhop Scand, 61 (5): 388.390.

Konradsen L, Ravn JB. (1991). Prolonged peroneal reaction time in ankle instability.

International Journal of Sports Medicine, 12 (3): 290-292.

Kram R, Powell J. (1989). A treadmill-mounted force platform. Journal of Applied

Physiology, 67 (4): 1692-1698.

Laughman RK, Carr TA, Chao EY, Youdas JW, Sim FH. (1980). Three-

dimensional kinematics of the taped ankle before and after exercise. The

American Journal of Sports Medicine, 8 (6): 425-431.

Ley Orgánica 15/99, de 13 de diciembre, de Protección de Datos de Carácter Personal.

Li L, Hamill J. (2002). Characteristics of the vertical ground reaction force component

prior to gait transition. American Alliance for Health, Physical Education,

Recreation and Dance 73 (3): 229-237.

Lindley TR, Kernozek TW. (1995). Taping and semirigid bracing may not affect ankle

funnctional range of motion. Journal of Athletic Training, 30 (2): 109-12.

185

Page 198: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

Biomecánica del vendaje funcional de tobillo

Locke A, Sitler M, Aland C, Kimura I. (1997). Long-Term use of a softshell

prophilactic ankle stabilizer on speed, agility, and vertical jump performance.

Journal of Sport Rehabilitation, 6: 235-45.

Lofvenberg R, Karrholm J. (1993). The influence of an ankle orthosis on the talar

and calcaneal motions in chronic lateral instability of the ankle. American Journal

of Sports Medicine, 21 (2): 224-30.

Lohrer H, Wilfried MD, Gollhofer A. (1999). Neuromuscular properties and functional

aspects of taped ankles. The American Journal of Sports Medicine, 27 (1): 69-75.

Louw Q, Grimmer K, Vaughan CL. (2006). Biomechanical outcomes of a knee

neuromuscular exercise programme among adolescent basketball players: a pilot

study. Physical Therapy in Sport, 7, 65-73

Mackean LC, Bell G, Burnham RS. (1995). Prophylactic ankle bracing Vs Taping:

effects on functional performance in female basketball players. Journal of

Orthopaedic and Sports Physical Therapy, 22 (2): 77-81.

Macpherson K, Sitler M, Kimura I, Horodyski M. (1995). Effects of a semirigid and

softshell prophylactic ankle stabilizer on selected performance tests among high school

football players. Journal of Orthopaedic and Sports Physical Therapy, 21 (3): 147-52.

Madigan ML, Pidcoe PE. (2003). Changes in landing biomechanics during a fatiguing

landing activity. Journal of Electromyography and Kinesiology, 13 (5): 491-498.

Malinzak RA, Colby S, Kirkendall D, Garrett WE. (2001). A comparison of knee

joint motion patterns between men and women in selected athletic tasks. Clinical

Biomechanics, 16: 438-445.

Manonelles P, Tárrega L. (1998). Epidemiología de las lesiones en el baloncesto.

Archivos de Medicina del Deporte. 15 (68): 479-483.

186

Page 199: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

Bibliografía

Marshall SW, Waller AE, Kick RW, Pugh CB, Loomis DP, Chalmers DJ. (2002).

An ecologic study of protective equipment and injury in two contact sports.

International Journal of Epidemiology, 31 (3):587-592.

Martin N, Harter RA. (1993). Comparison of inversion restraint provided by ankle

prophylactic devices before and after exercise. Journal of Athletic Training, 28: 324-329.

Martin N, Harter RA. (1993). Comparison of inversion restraint provided by ankle

prophylactic devices before and after exercise. Journal of Athletic Training, 28

(4): 324-329.

Martin PG, Soto JM. (1995). Anatomo-Fisiología (I). Masson, Barcelona.

Martínez JL. (1985). Patología lesional del baloncesto. Archivos de Medicina del

Deporte, 2 (8): 341-348.

Masharawi Y, Carmeli E, Masharawi R, Trott P. (2003). The effect of braceson

restricting weight-bearing ankle inversion in elite netballers. Physical Therapy in

Sport, 4: 24-33.

McCaw ST, Cerullo JF. (1999). Prophylactic ankle stabilizers affect ankle joint kinematics

during drop landings. Medicine Science in Sport and Exercise, 31 (5): 702-707.

Mckay H, Tsang G, Heinonen A, MacKelvie K, Sanderson D, Khan KM. (2005).

Ground reaction foces associated with an effective elementary school based

jumping intervention. British Journal of Sports Medicine, 39 (1): 10-14.

McNair PJ, Marshall RN. (1994). Landing characteristics in subjects with normal and

anterior cruciate ligament deficient knee joints. Archives of Physical Medicine and

Rehabilitation, 75 (5):584-9.

McNair PJ, Prapavessis H, Callender K. (2000). Decreasing landing forces: effect of

instruction. British Journal of Sports Medicine, 34 (4): 293-296.

187

Page 200: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

Biomecánica del vendaje funcional de tobillo

McNitt-Gray JL. (1993). Kinetics of the lower extremities during drop landings from

three heights. Journal of Biomechanics, 26 (9): 1037-1046.

McNitt-Gray, J.L. (1991). Kinematics and impulse characteristics of drop landings

from three heights. International Journal of Sport Biomechanics, 7: 201-224.

Meana M, Alegre L, Elvira JL, Aguado X. (2008). Kinematics of ankle taping after a

training session. International Journal of Sports Medicine, 29:70-76.

Meana M, López Elvira JL, Grande I, Aguado X. (2005). Biomecánica del vendaje

funcional preventivo de tobillo (II). Archivos de Medicina del Deporte, 22 (106):

101-109.

Meana M, López JL, Grande I, Aguado X. (2000). El esguince de tobillo en deportes

de colaboración-oposición: mecanismos de lesión. Archivos de Medicina del

Deporte, 75: 59-66.

Meana M. (2002). Biomecánica del vendaje funcional preventivo de tobillo en deportes de

colaboración-oposición, Tesis doctoral. Universidad de Castilla la Mancha, Toledo.

Metcalfe RC, Schlabach GA, Looney MA, Renehan EJ. (1997). A comparison of

moleskin tape, linen tape, and lace-up brace on joint restriction and movement

performance. Journal of Athletic Training, 32 (2): 136-140.

Mickel TJ, Bottoni CR, Tsuji G, Chang K, Baum L, Tokushige KA. (2006).

Prophylactic bracing versus taping for the prevention of ankle sprains in high

school athletes: a prospective, randomized trial. The Journal of Foot and Ankle

Surgery, 45 (6): 360-365.

Mizrahi J, Susak Z. (1982). Analysis of parameters affecting impact force attenuation

during landing in human vertical free fall. Engineering in Medicine, 11 (3):141-7.

Munro CF, Miller DI, Fuglevand AJ. (1985). Ground reaction forces in running: a

reexamination. Journal of Biomechanics 20 (2): 147-155.

188

Page 201: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

Bibliografía

Myburgh KH, Vaughan CL, Isaacs SK. (1984). The effects of ankle guards and

taping on joint motion before, during, and after a squash match. The American

journal of Sports Medicine, 12 (6): 441-446.

Nakafawa L, Hoffman M. (2004). Performance in static, dynamic, and clinical tests of

postural control in individuals with recurrent ankle sprains. Journal of Sport

Rehabilitation, 13 (3): 255-268.

Nawoczenski DA, Owen MG, Ecker ML, Altman B, Epler M. (1985). Objective

evaluation of peroneal response to sudden inversion stress. Journal of

Orthopaedic and Sports Physical Therapy, 7 (3):107–109.

Neiger H. (1990). Los vendajes funcionales, aplicaciones en traumatología del deporte

y en reeducación. Masson, Barcelona.

Nielsen AB, Yde J. (1989). Epidemiology and traumatology of injuries in soccer.

American Journal of Sports Medicine, 17: 803-807.

Nigg BM, Herzog W. (1999). Biomechanics of the musculo-skeletal system. Wiley,

Calgary (Canadá). 2ª edicion.

Onate JA, Guskiewicz EM, Sullivan RJ. (2001). Augmented feedback reduces jump

landing forces. Journal of Orthopaedic and Sports Physical Therapy, 31 (9): 511-517.

Orchard J, Seward H. (2002). Epidemiology of injuries in the Australian Football

League, seasons 1997-2000. British Journal of Sports Medicine, 36 (1): 39-44.

Özgüven, H. y Berme, N. (1988). An experimental and analytical study of impact

forces during human jumping. Journal of biomechanics, 21 (12): 1061-1066.

Papadopoulos ES, Nicolopoulos C, Baldoukas A, Anderson EG, Athanasopoulos S.

(2005). The effect of different ankle brace-skin interface application pressures on

the electromyographic peroneus longus reaction time. The Foot, 15: 175-179.

189

Page 202: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

Biomecánica del vendaje funcional de tobillo

Paris DL, Sullivan SJ. (1992). Isometric strength of rearfoot inversion and eversion in

nonsupported, taped, and braced ankles assessed by a hand-held dynamometer.

Journal of Orthopaedic and Sports Physical Therapy, 15 (5): 229-235.

Paris DL, Vardaxis V, Kokkaliaris J. (1995). Ankle ranges of motion during extended

activity periods while taped and braced. Journal of Athletic Training, 30 (3): 223-228.

Paris DL, Vardaxis V, Kokkaliaris J. (1995). Ankle ranges of motion during extended

activity periods while taped and braced. Journal of Athletic Training, 30 (3): 223-228.

Paris DL. (1992). The effects of the Swede-o, new cross, and McDavid ankle braces

and adhesive ankle taping on speed, balance, agility and vertical jump. Journal of

Athletic Training, 27 (3): 253-255.

Passerallo AJ, Calabrese GJ. (1994). Improving traditional ankle taping techniques

with rigid strapping tape. Journal of Athletic Training, 29 (1): 76-77.

Pflum MA, Shelburne KB, Torry MR, Decker MJ, Pandy MG. (2004). Model

prediction of anterior cruciate ligament force during drop-landings. Medicine and

Science in Sports and Exercise, 36 (11): 1949-1958.

Pienkowski D, Mcmorrow M, Shapiro R, Caborn DN, Stayton J. (1995). The effect

of ankle stabilizers on athletic performance. American Journal of Sports

Medicine, 23 (6): 757-762.

Pittenger VM, McCaw ST, Thomas DQ. (2002). Vertical ground reaction forces of

children during one and two leg rope jumping. Research Quarterly for Exercise

and Sport, 73 (4): 445-449.

Plas F, Viel E, Blanc Y. (1984). La marcha humana. Masson. Barcelona.

Pope R, Herbert, R, Kirwan J. (1998). Effects of ankle dorsiflexion range and pre-

exercise calf muscle stretching on injury risk in army recruits. Australian Journal

of Physiotherapy, 44 (3): 165-172.

190

Page 203: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

Bibliografía

Prapavessis H, Mcnair PJ, Anderson K, Hohepa M. (2003). Decreasing landing

forces in children: the effect of instructions. Journal of Orthopaedic and Sports

Physical Therapy, 33 (4): 204-207.

Prapavessis H, Mcnair PJ. (1999). Effects of instruction in jumping technique and

experience jumping on ground reaction forces. Journal of Orthopaedic in Sports

and Physical Therapy, 29: 352-356.

Rarick GL. (1962). The measurable support of the ankle joint by conventional methods of

taping. The Journal of Bone and Joint Surgeon. American volume, 44:1183-1190.

Redfern M, Cham R, Gielo-perczak K, Groè R, Hirvonen M, Lanshammar H,

Marpet M, Yi-Chung C, Powers C. (2001). Biomechanics of slips. Ergonomics,

44 (13): 1138-1166.

Refshauge KM, Kilbreath SL, Raymond J. (2000). The effect of recurrent ankle

inversion sprain and taping on propioception at the ankle. Medicine and Science

in Sports and Exercise, 32 (1): 10-15.

Richie DH, Celso SF, Bellucci PA. (1985). Aerobic dance injuries: a retrospective study of

instructors and participants. Physician and Sports Medicine, 13 (2): 130-140.

Riemann B (2002) Is there a link between chronic ankle instability and postural

stability?. Journal of Athletic Training, 37:386-393.

Riemann BL, Schmitz RJ, Gale MG, McCaw ST. (2002). Effect of ankle taping and bracing

on vertical ground reaction forces during drop landings before and after treadmill jogging.

Journal of Orthopaedic and Sports Physical Therapy, 32 (12): 628-35.

Robbins S, Waked E, Rappel R. (1995). Ankle taping improves proprioception before and

after exercise in young men. British journal of Sports Medicine, 29 (4): 242-247.

Robbins S, Waked E. (1998). Factors associated with ankle injuries, preventive

measures. Sports Medicine, 25: 63-72.

191

Page 204: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

Biomecánica del vendaje funcional de tobillo

Robbins S, Waked E. (1998). Factors associated with ankle injuries, preventive

measures. Sports Medicine, 25 (1):63-72.

Robinson JR, Frederick EC, Cooper LB. (1986). Systematic ankle stabilizacion and

the effect on performance. Medicine and Science in Sports and Exercise, 18 (6):

625-628.

Rodriguez C. (1998). Patología del pie y del tobillo en el baloncesto. Archivos de

Medicina del Deporte, 15 (68): 497-503.

Rodríguez C. (1998). Patología del pie y del tobillo en el baloncesto. Archivos de

Medicina del Deporte, 15 (68): 497-503.

Root ML, Orien WP, Weed JH, Hugues RJ. (1991). Exploración biomecánica del pie

(Volumen 1). Ortocen, Madrid.

Rouvière, H, Delmas A. (1996). Anatomía Humana. Descriptiva, topográfica y

funcional (Tomo 3). Masson, Barcelona.

Rovere GD, Clarke TJ, Yates S, Burley K. (1988). Retrospective comparison of

taping and ankle stabilizers in preventing ankle injuries. American Journal of

Sports Medicine, 16 (3): 228-233.

Sacco I, Yuji H, Agostini A, Yuri E, Almeida T, Sonsino C, Rizzo L, Kavamoto C,

Fernandes JA, Peixoto JC. (2004). Influence of ankle devices in the jump and

landing biomechanical responses in basketball, Revista Brasileira de Medicina do

Esporte, 10 (6): 453-458.

Santos MJ, McIntire K, Foecking J, Liu W. (2004). The effects of ankle bracing on

motion of the knee and the hip joint during trunk rotation tasks. Clinical

Biomechanics, 19 (9): 964-971.

192

Page 205: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

Bibliografía

Schot PK, Hart BA, Mueller M. (2002). Within-participant variation in landing

kinetics: movement behavior trait or transient?. Research Quarterly for Exercise

and Sport, 73 (4): 450-456.

Seil R, Rupp S, Tempelhof S, Kohn D. (1998). Sports injuries in team handball. A

one-year prospective study of sixteen men’s senior teams of a superior non-

professional level. The American Journal of Sports Medicine, 26 (5): 681-687.

Self BP, Paine D. (2001). Ankle biomechanics during four landing techniques.

Medicine and Science in Sports and Exercise, 33 (8): 1338-1344.

Shapiro MS, Kabo M, Mitchell PW, Loren G, Tsenter M. (1994). Ankle sprain

prohylaxis: an analysis of the stabilizing effects of braces and tape. American

Journal of Sports Medicine, 22 (1): 78-82.

Sharpe SR, Knapik J, Jones B. (1997). Ankle braces effectively reduce recurrence of

ankle sprains in female soccer players. Journal of Athletic Training, 32 (1): 21-24.

Sharpe SR, Knapik J, Jones B. (1997). Ankle braces effectively reduce recurrence of

ankle sprains in female soccer players. Journal of athletic training, 32 (1): 21-24.

Sitler M, Ryan J, Wheeler B, Mcbride J, Arciero R, Anderson J, Horodyski M.

(1994). The efficacy of a semirigid ankle stabilizer to reduce acute ankle injuries

in basketball. American Journal of Sports Medicine, 22 (4): 454-461.

Sitler M, Ryan J, Wheeler B, Mcbride J, Arciero R, Anderson J, Horodyski M.

(1994). The efficacy of a semirigid ankle stabilizer to reduce acute ankle injuries

in basketball. The American Journal of Sports Medicine, 22 (4): 454-61.

Sullivan JA, Gross RH, Grana WA, Garcia-Moral CA. (1980). Evaluation of injuries in

youth soccer. The American Journal of Sports Medicine, 8 (5): 325-327.

193

Page 206: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

Biomecánica del vendaje funcional de tobillo

Swartz EE, Decoster LC, Russell PJ, Croce RV. (2005). Effects of developmental

satage and sex on lower estremity kinematics and vertical ground reaction forces

during landing. Journal of Athletic Training, 40 (1): 9-14.

Thacker S, Stroup D, Branche C, Gilchrist J, Goodman R, Weitman E. (1999). The

prevention of ankle sprains in sports. The American Journal of Sports Medicine,

27 (6): 753-760.

Tillman MD, Hass CJ, Brunt D, Bennett GR. (2004). Jumping and landing techniques in

elite women's volleyball. Journal of Sports Science and Medicine, 3: 30-36.

Tropp H, Ekstrand J, Gillquist J. (1984). Stabilometry in functional instability of the

ankle and its value in predicting injury. Medicine and Science in Sports and

Exercise, 16(1): 64-66.

Tropp H, Askling C, Gillquist J. (1985a). Prevention of ankle sprains. The American

Journal of Sports Medicine, 13: 259-262.

Tropp H, Odenrick P, Gillquist J. (1985b). Stabilometry recordings in functional and

mechanical instability of the ankle joint. International Journal of Sports Medicine,

6:180-182.

Venesky K, Docherty CL, Dapena J, Schrader J. (2006). Prophylactic ankle braces

and knee varus-valgus and internal-external rotation torque. Journal of Athletic

Training, 41 (3): 239-244.

Verbrugge JD. (1996). The effects of semirigid air-stirrup bracing vs adhesive ankle

taping on motor performance. Journal of Orthopaedic and Sports Physical

Therapy, 23 (5): 320-5.

Verhagen E, van der Beek A, Twisk J, Bouter L, Bahr R, van Mechelen W. (2004).

The effect of a proprioceptive balance board training program for the prevention

of ankle sprains. The American Journal of Sports Medicine, 32 (6): 1385-1393.

194

Page 207: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

Bibliografía

Viladot A. (1989). Quince lecciones sobre patología del pie, 1ª Edición. Toray,

Barcelona.: 241-244.

Villarroya A, Nerón S, Marín M, Moros T, Marco C. (1999). “Cargas excesivas y

mecanismos de lesión deportiva”. Archivos de Medicina del Deporte, 16 (70): 173-9.

Wedderkopp, N., Kaltoft, M., Lundgaard, B., Rosendahl, M., & Froberg, K.

(1999). Prevention of injuries in young female players in European team handball.

A prospective intervention study. Scandinavian Journal of Medicine and Science

in Sports, 9: 41-/47.

White SC, Gilchrist LA, Christina KA. (2002). Within-day accommodation effects on

vertical reaction forces for treadmill running. Journal of Applied Biomechanics,

18: 74-82.

Wikstrom EA, Tillman MD, Chmielewski TL, Borsa PA. (2006). Measurement and

evaluation of dynamic joint stability of the knee and ankle after injury. Sports

Medicine, 36:393-410.

Wiley JP, Nigg BM. (1996). The effect of an ankle orthosis on ankle range of motion and

performance. Journal of Orthopaedic and Sports Physical Therapy, 23 (6): 362-9.

Wilkerson GB. (1991). Comparative biomechanical effects of the standard method of

andle taping and a taping method designed to enhace subtalar stability. The

American Journal of Sports Medicine, 19 (6): 588-595.

Wilkerson GB. (2002). Biomechanical and neuromuscular effects of ankle taping and

bracing. Journal of Athletic Training, 37 (4): 436-445.

Willson J, Torry MR, Decker MJ, Kernozek T, Steadman JR. (2001). Effects of

walking poles on lower extremity gait mechanics. Medicine Science in Sports and

Exercise, 33 (1): 142-147.

195

Page 208: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

Biomecánica del vendaje funcional de tobillo

Woods C, Hawkins R, Hulse M, Hodson A. (2003). The football association medical

research programme: an audit of injuries in professional football: an analysis of

ankle sprains. British Journal of Sports Medicine, 37 (3): 233-238.

Yaggie JA, Kinzey SJ. (2001). A comparative analysis of selected ankle orthoses

during functional tasks. Journal of Sport Rehabilitation, 10: 174-83.

Yde J, Nielsen AB. (1990). Sports injuries in adolescents’ ball games: soccer, handball

and basketaball. British Journal of Sports Medicine, 24 (1): 51-54.

Yeung MS, Chan KM, So CH, Yuan WY. (1994). An epidemiological survey on

ankle sprain. British Journal of Sports Medicine, 28 (2): 112-116.

Yi CH, Brunt D, Kim HD, Fiolkowski P. (2003). Effect of ankle taping and exercise

on EMG and kinetics during landing. Journal of Physical Therapy Science, 15

(2):81-85.

Yu B, Kirkendall D, Garrett WE. (2002a). Anterior Cruciate Ligament Injuries in

Female Athletes: Anatomy, Physiology, and Motor Control. Sports Medicine and

Arthroscopy Review. 10: 58-68.

Yu B, Kirkendall D, Taft TN, Garrett WE. (2002b). Lower extremity motor control-

related and other risk factors for non-contact anterior cruciate ligament injuries.

Instructional Course Lectures. 51: 315-324.

Yu B, McClure SB, Onate JA, Guskiewicz KM, Kirkendall DT, Garrett WE.

(2005). Age and gender effects on lower extremity kinematics of youth soccer

players in a stop-jump task. The American Journal of Sports Medicine, 33 (9):

1356-64.

Zazulak BT, Ponce PL, Straub SJ, Michael JM, Avedisian L, Hewett TE. (2005).

Gender comparison of hip muscle activity during single-leg landing. Journal of

Orthopaedic and Sports Physical Therapy, 35 (5): 292-9.

196

Page 209: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

Bibliografía

Zelisko JA, Noble HB, Porter MA. (1982). Comparison of men´s and women´s

professional basketball injuries. The American Journal of Sports Medicine, 10 (5):

297-299.

Zhang SN, Bates BT, Dufek JS. (2000). Contributions of lower extremity joints to

energy dissipation during landings. Medicine and Science in Sports and Exercise, 32

(4): 812-819.

197

Page 210: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

Biomecánica del vendaje funcional de tobillo

198

Page 211: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

88.. AAnneexxooss

Page 212: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL
Page 213: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

AAnneexxoo 11:: HHoojjaa ddee ccoonnsseennttiimmiieennttoo

Page 214: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL
Page 215: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

DECLARACIÓN DE CONSENTIMIENTO INDIVIDUAL:

Yo con DNI nº:

y mayor de 18 años de edad participo libremente en las sesiones prácticas y mediciones

de este estudio.

He recibido una copia del “Informe Explicativo y de la Declaración de

Consentimiento”, documento que he comprendido en su totalidad y que describe los

procedimiento que van a ser seguidos y las consecuencias y riesgos de mi participación

como sujeto experimental.

He leído toda la información que me ha sido proporcionada y todas las preguntas que he

formulado han sido contestadas satisfactoriamente. Participo voluntariamente en esta

actividad siendo consciente de que puedo renunciar en el momento que quiera.

Acepto que los datos obtenidos en esta investigación sean publicados con la condición

de que mi nombre no sea utilizado.

NOMBRE DEL PARTICIPANTE:

FIRMA:

FECHA:

FIRMA DEL INVESTIGADOR:

FECHA:

Certificando que los términos del formulario han sido explicados verbalmente a la

persona y que entiende estos términos antes de firmarlo.

Page 216: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL
Page 217: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

AAnneexxoo 22:: CCuueessttiioonnaarriioo ssoobbrree aaccttiivviiddaadd ffííssiiccaa yy lleessiioonneess

Page 218: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL
Page 219: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

CUESTIONARIO DE ACTIVIDAD FÍSICA

Nombre: Edad: Teléfono: e-mail: Fecha de realización: Ocupación: 1. La frecuencia con la que realizas ejercicio físico (sin contar con las prácticas de la facultad) es de:

Más de tres días a la semana Tres días a la semana Dos días a la semana Realizo ejercicio físico sólo ocasionalmente Casi nunca o nunca realizo ejercicio físico aparte de las clases

2. ¿Has participado en algún programa de entrenamiento más de 2 días a la semana en los últimos 3 meses? SÍ NO

Si has contestado afirmativamente ¿En qué actividad y cuantos días a la semana?

3. ¿Has participado en deporte competitivo en los últimos 3 meses?

SÍ NO

Si tu respuesta ha sido afirmativa: ¿En qué deporte?

¿A qué nivel? regional nacional internacional

4. ¿Vas a entrenar en algún deporte federado o a realizar ejercicio físico regular en las próximas 3 semanas?

SÍ NO

Si tu respuesta ha sido afirmativa: ¿En qué deporte y cuantos días a la semana?

5. ¿Qué lesiones has tenido en los últimos dos años? ¿cuánto tiempo tardaste en recuperarte? 6.- ¿has utilizado alguna vez vendajes funcionales en el tobillo?

SÍ NO Si tu respuesta ha sido afirmativa: ¿Durante cuanto tiempo?

Page 220: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

¿Realizaste actividad física con el vendaje?. SÍ NO 7.- ¿Has tenido algún problema en tus pies? (como dolor en alguna parte determinada, pies cavos o planos, ....) 8.- Has utilizado en alguna ocasión plantillas ortopédicas.

SÍ NO

Si tu respuesta ha sido afirmativa: ¿para que las utilizaste y durante cuanto tiempo?

9. ¿Has realizado alguna vez tests en plataforma de fuerzas?

SÍ NO Si tu respuesta ha sido afirmativa: ¿Cuáles fueron los ejercicios que realizaste?

Page 221: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

AAnneexxoo 33:: AArrttííccuullooss 3.1.- Ya publicados

− Abián J, Alegre LM, Jiménez L, Lara AJ, Aguado X. (2005). Fuerzas de

reacción del suelo en pies cavos y planos. Archivos de Medicina del

Deporte, 108: 285-292.

− Abián J, Alegre LM, Fernández JM, Lara AJ, Meana M, Aguado X.

(2006). Avances del vendaje funcional de tobillo en el deporte. Archivos de

Medicina del Deporte, 113: 219-229.

− Abián J, Alegre LM, Lara AJ, Aguado X. (2006). Diferencias de sexo

durante la amortiguación de caídas en tests de salto. Archivos de Medicina

del Deporte, 116: 441-450.

− Abián J, Alegre LM, Fernández JM, Aguado X. (2007). El vendaje

funcional elástico vs no elástico en saltos y amortiguaciones. Archivos de

Medicina del Deporte, 122: 442-449.

− Abián J, Alegre LM, Lara AJ, Rubio JA, Aguado X. (2008) Kinetic

differences between young men and women in landings from jump tests.

Journal of Sports Medicine and Physical Fitness, 48: 305-310.

− Abián-Vicén J, Alegre LM, Fernández-Rodríguez JM, Lara AJ, Meana

M, Aguado X. (2008) Ankle taping does not impair performance in jump or

balance tests. Journal of Sports Science and Medicine, 7: 350-356.

3.2.- Aceptados, en imprenta

− Abián-Vicén J, Alegre LM, Fernández-Rodríguez JM, Aguado X.

Prophylactic ankle taping: elastic versus inelastic taping. Aceptado,

pendiente de publicación en Foot & Ankle International.

3.3.- En revisión − Abián-Vicén J, Alegre LM, Lara AJ, Aguado X. Gender differences in

ground reaction forces during landings. Se encuentra en segunda revisión en

Journal of Sport Rehabilitation.

Page 222: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL
Page 223: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

FUERZAS DE REACCIÓN DEL SUELO EN PIES CAVOS Y PLANOS

VOLUMEN XXII - N.º 108 - 2005

285A M D

ORIGINALVolumen XXIINúmero 108

2005Págs. 285-292

CORRESPONDENCIA:Javier Abián VicénLaboratorio de Biomecánica, Facultad de Ciencias del Deporte, Campus Tecnológico de la Fábrica de Armas,Universidad de Castilla la Mancha. Avenida Carlos III S/N. 45071 Toledo

Aceptado: 03-03-2005 / Original nº 50003-03-2005 / Original nº 50003-03-2005 / Original nº 50003-03-2005 / Original nº 50003-03-2005 / Original nº 500

FUERZAS DE REACCIÓN DEL SUELO EN PIES CAVOS Y PLANOS

JavierAbiánVicén1

Luis M.AlegreDurán1

Amador J.LaraSánchez1

LuisJiménezLinares2

XavierAguadoJódar1

1Facultadde Cienciasdel Deportede ToledoUniversidadde Castillala Mancha2EscuelaSuperiorde IngenieríaInformáticade Ciudad RealUniversidadde Castillala Mancha

El objetivo de este estudio se ha centrado en medir las fuerzasde reacción en diferentes movimientos (marcha, carrera,cambio de dirección y amortiguación de caída) en unamuestra de sujetos sedentarios sanos con pies planos y cavos.Participaron en el estudio 15 mujeres jóvenes (edad: 19,4 ±1.3 años; peso: 57,17 ± 8,98 Kg); 8 con pies planos (P) y 7con pies cavos (C). Fueron sometidas a una batería depruebas: marcha (velocidad = 1,6 m/s), carrera (velocidad =3 m/s), amortiguación de caída (desde una altura de 0,75 m)y cambio de dirección. Se estudiaron las fuerzas verticales,anteroposteriores y mediolaterales, utilizando una plataformade fuerzas piezoeléctrica.Aparecieron diferencias significativas (p<0,01) entre piesplanos y cavos en la duración del apoyo en el cambio dedirección, siendo mayores en los planos (C = 0,30 ± 0,04 sy P = 0,37 ± 0,04 s) y en el primer pico de fuerza de laamortiguación de la caída (p<0,05), con valores superioresen los cavos (C = 5,78 ± 1,29 BW y P = 4,29 ± 0,84 BW).El resto de variables estudiadas no mostraron diferenciassignificativas, aunque todos los picos de fuerza en losmovimientos máximos fueron mayores en el grupo con piescavos y los picos de impacto en marcha y carrera fueronligeramente superiores en los pies planos.El grado de significación estadística no tiene por qué ser ellímite que marque el mayor o menor riesgo de futura lesiónasociada a las fuerzas de reacción. Pequeñas y no significati-vas diferencias podrían marcar un incremento sustancial delriesgo. Cabe destacar los mayores valores registrados en lospies cavos, en los movimientos máximos, en los que existiríaun mayor riesgo para ellos. Por otro lado las mínimas o nulasdiferencias observadas en los patrones de movimientopodrían explicarse por adaptaciones que realiza el sujeto enel movimiento.

Palabras clave: Biomecánica. Cinética. Prevención delesiones. Fuerzas de reacción. Pie. Locomoción.

R E S U M E N S U M M A R Y

GROUND REACTION FORCES IN HIGH-ARCH AND FLAT FEET

The aim of this study was to measure the ground reactionforces in different movements (walking, running, changes ofdirection and landing), in a sample of sedentary subjects withhigh-arch feet or flat feet. Fifteen young women volunteeredfor the study (age: 19,40 ± 1,29 years; weight: 57,17 ± 8,98Kg); 8 with flat feet (P) and 7 with high-arch feet (C). All ofthem carried out the following tests on a force platform:walking (speed = 1,6 m/s), running (speed = 3 m/s), droplanding (height = 0,75 m), and changes of direction.Vertical, horizontal and mediolateral ground reaction forceswere collected using a piezoelectric force platform.There were significant differences (p<0,01) between flat andhigh-arch feet in the contact time during the change ofdirection test, with greater contact times in subjects with flatfeet (C = 0,30 ± 0,04 s y P = 0,37 ± 0,04 s), and in thefirst peak vertical force during landing (p<0,05), with greatervalues in subjects with high-arch feet (C = 5,78 ± 1,29 BWy P = 4,29 ± 0,84 BW). The other variables studied did notshow significant differences between groups, although peakvertical forces for the maximum tests were greater in thehigh-arch feet group, and peak forces during walking andrunning were slightly greater for the flat feet group.The lack of significant differences does not have to be thelimit to predict the risk of injury provoked by greater peakforces. Small and not significant differences might be enoughto increase this risk. The higher force values found in thehigh-arch feet group during maximal tests show a higher riskof injury during these kinds of movements. The minimaldifferences found in the movement patterns between groupscould be explained by individual adaptations during thetests.

Key words: Biomechanics. Kinetics. Injury prevention.Ground reaction forces. Foot. Locomotion.

Page 224: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

ABIÁN VICÉN J.,et al.

ARCHIVOS DE MEDICINA DEL DEPORTE

286A M D

TABLA 1.-Estudios que tratan

sobre fuerzasde reacción

en la amortiguaciónde caídas.(*) El autorno informa sobre el

sexo de los sujetosLos tres primeros

autores realizan losensayos de caídas

con los sujetoscalzados y los dosúltimos descalzos)

INTRODUCCIÓN

La biomecánica del apoyo en el suelo y, conse-cuentemente, las fuerzas de reacción en la reali-zación de una determinada actividad, varían enfunción de diferentes factores, tanto internos dela persona (estructurales, la técnica de realiza-ción del movimiento y la posible fatiga, entreotros), como externos (calzado y suelo).

Durante la práctica deportiva se ven incremen-tadas las solicitaciones mecánicas del pie, loque puede llevar incluso a una modificacióntemporal de la huella plantar, tal y como se vereflejado en Meana1 o en Robbins y Hanna2, quedescriben descensos desde 119,4 cm2 hasta112,4 cm2 en la superficie de apoyo del pie, enun grupo de atletas recreacionales, después de48 días realizando su entrenamiento habitualde carrera. Según Sirgo et al.3 es lícito pensarque estas adaptaciones biomecánicas agudasante el esfuerzo tomen con el tiempo forma deadaptaciones crónicas, según la modalidad de-portiva practicada.

Algunos autores describen mayores fuerzas deimpacto en pies cavos en movimientos como lacarrera, sobre todo si se incrementa la veloci-dad4.

El tener una tipología determinada de pie estáasociado a un mayor o menor riesgo de padecer

lesiones; ésta es una de las cuestiones que seplantean Kaufman et al.5. Estos autores descri-ben que entre otras lesiones, en las fracturas porestrés los valores de incidencia oscilarían desdeel 5,8% en sujetos con pies normales hasta el9,9% en sujetos con pies cavos y el 10,8% ensujetos con pies planos. Valores algo superioresa los que asocian los mismos autores a latendinitis de Aquiles, que irían desde el 3,6% ensujetos normales hasta el 5,7% en sujetos conpies cavos y el 5,8% en sujetos con pies planos.

Otros autores también consideran un mayorriesgo de lesiones en pies cavos o planos extre-mos, pero sin mostrar estudios estadísticos6,7.

Se han realizado estudios donde se registrabanlas fuerzas de reacción en determinados patro-nes de movimiento, como por ejemplo en lamarcha, con velocidades que oscilan entre 1,28m/s y 1,89 m/s8-11, y en la carrera, con velocida-des que van desde 2,5 m/s a 3,2 m/s12-16. Enotros estudios se han analizado las fuerzas dereacción en movimientos máximos; Young etal.17 estudiaron los cambios de dirección y otrosautores la amortiguación de caídas18-22 (Tabla1). No obstante en ninguno de estos trabajos seha realizado a la vez el estudio de patrones demovimiento y movimientos máximos.

Así, el objetivo de este trabajo ha sido analizarlas diferencias en las fuerzas de reacción según

Autor Sujetos Características Altura de caída (m) 1º pico (BW) 2º pico (BW)

Dufek y Bates19 3% Físicamente 0,60 2,62 8,02activos 1,00 4,30 10,18

Bauer et al.18 8 %5 & 9 años 0,61 5,60 8,50Zhang et al.22 9 % Físicamente 0,32 1,69 5,12

activos 0,62 3,53 6,590,10 6,24 9,48

Seegmiller y McCaw21 20 & 10 gimnastas 0,30 1,93 5,520,60 4,45 8,210,90 6,70 11,42

10 deporte 0,30 1,77 4,39recreacional 0,60 3,06 5,5

0,90 4,89 7,63Hargrave et al.20 48 (*) 16 supinadores

16 pronadores 0,30 3,5516 normales

Page 225: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

FUERZAS DE REACCIÓN DEL SUELO EN PIES CAVOS Y PLANOS

VOLUMEN XXII - N.º 108 - 2005

287A M D

FIGURA 1.-Esquemade la colocacióndel material en lostests de marchay carrera

las distintas tipologías extremas de pies (cavos-planos) en la marcha, la carrera, el cambio dedirección y la amortiguación de caída, con elpropósito de discutir sobre el mayor o menorriesgo de lesión entre estos tipos de pies.

MATERIAL Y MÉTODO

Diseño experimental

Se llevaron a cabo tres sesiones. En la primera,después de la valoración cualitativa del tipo depie mediante un podoscopio, se realizó lacineantropometría, la toma de la huella plantary se rellenó un test sobre actividad física yposibles lesiones. En esta sesión se citó alsujeto para que viniera a realizar la familiari-zación un día posterior.

En la segunda sesión se realizó la familiariza-ción y en la tercera se procedió a la medición delas pruebas. Entre estas dos últimas sesionesen ningún caso pasó más de una semana.

Sujetos

Participaron voluntariamente en el estudio 15mujeres jóvenes universitarias (edad: 19,4 ± 1,3años; peso: 57,17 ± 8,98 kg), de ellas 8 teníanpies planos extremos y 7 pies cavos extremos(Tabla 2). Ninguna practicaba actividad físicaregular más de dos días a la semana. Lossujetos no usaban prótesis ni ortesis y no ha-bían tenido lesiones en el miembro inferior enlos últimos dos años. Todos los sujetos realiza-ron las diferentes pruebas con calzadopolivalente del usado en deportes de cancha.

Material y protocolos

Para describir las características cineantropo-métricas se usó una báscula de pie Seca (con

sensibilidad de 100 g), un antropómetro GPM(con sensibilidad de 1 mm), una cintaantropométrica Fat O Meter (con sensibilidad de1 mm), un paquímetro GPM (con sensibilidadde 1 mm), un plicómetro Holtain (con sensibili-dad de 0,2 mm) y un tallímetro Seca (con sensi-bilidad de 1 mm). Se usaron los protocolosrecomendados por el grupo español decineantropometría (GREC)23.

Se obtuvieron las huellas plantares mediantefotopodograma24 parametrizándolas con el mé-todo descrito por Hernández25.

Para la medición de las fuerzas de reacción seutilizó una plataforma de fuerzas piezoeléctricaKistler (2812A1-3), colocada bajo el pavimentosintético de un polideportivo. Se usó una fre-cuencia de muestreo de 500 Hz, salvo para laprueba de amortiguación de caída, que fue de1000 Hz.

Para medir la velocidad media en la marcha y lacarrera se usaron 2 barreras fotoeléctricas colo-cadas con una separación de 6 m. El rango develocidad para dar como válidos los ensayosfue: en marcha desde 1,5 hasta 1,7 m/s y encarrera desde 2,8 hasta 3,2 m/s.

Todos los sujetos realizaron una sesión defamiliarización para practicar los tests. En to-

Edad (Años) Peso (Kg) Estatura (cm) FFM (Kg)

Cavos 19,3 ± 1,6 (4) 57,04 ± 6,70 (19,60) 161,17 ± 2,79 (8,40) 45,46 ± 3,29 (10,18)Planos 19,4 ± 1,1 (3) 57,28 ± 11,09 (33,60) 161,03 ± 7,10 (22) 46,18 ± 6,57 (18,49)Total 19,3 ± 1,3 (4) 57,17 ± 8,98 (33,60) 161,09 ± 5,35 (22) 45,85 ± 5,14 (18,49)

TABLA 2.-Característicasdescriptivas de lamuestra [media ±desviación estándar(rango); FFM = fatfree mass o peso librede grasa]

Page 226: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

ABIÁN VICÉN J.,et al.

ARCHIVOS DE MEDICINA DEL DEPORTE

288A M D

das las sesiones se realizó un calentamientoprevio de 8 minutos.

Se realizaron cuatro pruebas con el siguienteorden: marcha, carrera, amortiguación de caíday cambio de dirección.

Marcha y carrera

Los sujetos daban vueltas al circuito, cuyo es-quema se puede ver en la Figura 1, de la formamás natural posible.

Tanto para la marcha como para la carrera setuvieron en cuenta varios criterios de observa-ción para determinar si el ensayo era metodo-lógicamente correcto, como se muestra en laTabla 3.

Amortiguación de la caída

A los sujetos se les pedía que amortiguaran almáximo la caída. Caían sobre la plataforma de

fuerzas desde una altura de 0,75 m. Debíancolocarse con los pies en el borde de unasuperficie elevada. Se les pedía que dieran unpaso hacia delante y que cayeran encima de laplataforma, no pudiendo perder el equilibrio,para una vez amortiguada la caída volver acolocarse de pie.

Cambio de dirección

Los sujetos debían realizar el circuito, cuyoesquema se puede ver en la Figura 2, en elmenor tiempo posible. Salían desde detrás deuna barrera fotoeléctrica, corrían 3 m hastafranquear una pica apoyando el pie derechoen la plataforma de fuerzas. Tras el apoyocambiaban 120º la dirección de carrera y reco-rrían 3 m hasta cortar una segunda barrerafotoeléctrica.

Variables

Se tomaron las fuerzas de reacción verticales yanteroposteriores en marcha y carrera, las ver-ticales en la amortiguación de la caída y las delos tres ejes en el cambio de dirección. Seconsideraron los picos de fuerza y el instanteen el que sucedía cada uno de estos aconteci-mientos, así como el tiempo en realizar laprueba del cambio de dirección (Figuras 3 y4).

En la marcha y la carrera se cogieron cincoensayos metodológicamente correctos, que senormalizaron, para obtener patrones de movi-miento. En el resto de pruebas se cogió elmejor ensayo de tres realizados correctamente.

Estadística

Se usó el programa de Statistica for Windowsv. 5.1. Se hicieron pruebas de estadística des-criptiva y de estadística inferencial. Se halla-ron medias, desviaciones típicas, rangos y seutilizó el test de la U de Mann-Whitney comoprueba de significación estadística. Se usó elcriterio estadístico de significación dep<0,05.

FIGURA 2.-Esquema

de la colocacióndel material en el test

de cambiode dirección

Acción para observar Aceptación del ensayo

– Apoya todo el pie derecho dentro de la plataforma Sí– Modifica la amplitud en los últimos tres pasos No– Modifica la frecuencia en los tres últimos apoyos No– Frena o acelera durante el apoyo en la plataforma No– Marca el apoyo en la plataforma No– Ha continuado caminando a la misma velocidad Sí– Ha realizado algún movimiento extraño No– Ha sido natural el apoyo Sí

TABLA 3.-Aspectos tenidosen cuenta para

considerar un ensayometodológicamentecorrecto en los tests

de marcha y carrera

Page 227: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

FUERZAS DE REACCIÓN DEL SUELO EN PIES CAVOS Y PLANOS

VOLUMEN XXII - N.º 108 - 2005

289A M D

RESULTADOS

Primero se expone la estadística descriptiva decada una de las pruebas y posteriormente laspruebas de significación estadística.

– Marcha y carrera: En la Tabla 4 se muestranlas fuerzas verticales y anteroposteriores re-gistradas en pies cavos y planos, así comoel promedio de toda la muestra y la diferen-cia entre los dos grupos. Las diferenciasobservadas entre ambos grupos han sidoinapreciables; las mayores se registran en elpico de frenado y el valle en la carrera,siendo los pies planos los que presentanvalores superiores (-0,21 BW y -0,20 BWrespectivamente).

– Cambio de dirección: En lo que se refiere a laeficacia (realizar el circuito en el menortiempo posible), ambos grupos han mostra-do unos valores muy similares con unadiferencia de tan solo 0,001 s. El tiempo deapoyo ha sido algo superior en el grupo delos pies planos (C = 0,300 ± 0,042 s y P =0,374 ± 0,044 s) mientras que los picos defuerza, tanto verticales (C = 2,73 ± 0,76BW y P = 2,47 ± 0,59 BW) como la resul-tante entre las fuerzas anteroposteriores ymediolaterales (C = 1,63 ± 0,52 BW y P =1,44 ± 0,56 BW), han sido superiores en elgrupo de los pies cavos (Tabla 5).

– Amortiguación de la Caída: La duración dela amortiguación ha sido superior en el

FIGURA 3.-Fuerzas verticalesy anteroposterioresen los tests de marcha(izquierda) y carrera(derecha)

FIGURA 4.-Fuerzas en los testsmáximos: amortiguaciónde la caída (izquierda)y cambio de dirección(derecha)

Page 228: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

ABIÁN VICÉN J.,et al.

ARCHIVOS DE MEDICINA DEL DEPORTE

290A M D

grupo de pies planos, con una diferencia de0,110 s, mientras que los picos de fuerzahan sido superiores en el grupo de los piescavos; en el primero con una diferencia de1,49 BW y en el segundo con una diferenciade 0,69 BW (Tabla 6).

– Diferencias significativas: Se han encontradodiferencias significativas entre pies cavos yplanos en dos variables; la duración delapoyo en el cambio de dirección (p<0,01)siendo mayor el valor que presentan lospies planos (C =0,300 ± 0,042 s y P =0,374 ± 0,044 s) y en el primer pico defuerza de la amortiguación de la caída

(p<0,05), con valores superiores en lospies cavos (C = 5,78 ± 1,29 BW y P = 4,29± 0,84 BW).

DISCUSIÓN

Los valores obtenidos en los picos de frenado,valle y aceleración en la marcha y la carrera hansido similares a los que dan diferentes autoresestudiando pies normales; en la marcha se des-criben en torno a 1,10-1,56 BW el pico de frena-do, 0,6-0,78 BW el valle y 1,00-1,35 BW el picode aceleración8-11,26,27. En la carrera los valoresoscilan desde 1,52 hasta 1,70 BW en el pico defrenado, valores en torno a 1,28 BW en el valle ydesde 2,48 hasta 2,71 BW en el pico de acelera-ción12,14-16; resultados muy similares a los quehemos obtenido en este estudio (Figura 3).

En los patrones de movimiento no han apareci-do diferencias en los picos de fuerza entre piesplanos y cavos. Puede ser debido a adaptacio-nes que realiza el sujeto para amortiguar esospicos, que a largo plazo se han relacionado condolor, molestias y lesiones. Grampp et al.28 co-mentan que puede haber adaptaciones indivi-

TABLA 4.-Resultados en los tests

de marcha (1)y carrera (2) con los

dos gruposestudiados; pies

cavos (C) y planos (P)[media ± desviación

estándar (rango)]

Duración circuito (s) Tiempo apoyo (s) Pico fuerza vertical (BW) Pico fuerza resultante (BW)

Cavos 2,468 ± 0,122 (0,284) 0,300 ± 0,042 (0,136) 2,79 ± 0,76 (1,98) 1,63 ± 0,52 (1,40)Planos 2,467 ± 0,167 (0,528) 0,374 ± 0,044 (0,140) 2,47 ± 0,59 (1,69) 1,44 ± 0,56 (1,47)Total 2,468 ± 0,142 (0,528) 0,339 ± 0,056 (0,212) 2,62 ± 0,67 (2,04) 1,53 ± 0,53 (1,47)Diferencia 0,001 - 0,074 0,33 0,20(C-P)

TABLA 5.-Resultados obtenidos

en el test de cambiode dirección con los

dos gruposestudiados; pies

cavos (C) y planos (P)[media ± desviación

estándar (rango)

Cavos 0,460 ± 0,136 5,78 ± 1,29 8,32 ± 1,76(0,361) (4,29) (5,14)

Planos 0,570 ± 0,188 4,29 ± 0,81 7,63 ± 1,40(0,629) (2,19) (4,55)

Todos 0,519 ± 0,170 4,99 ± 1,28 7,95 ± 1,56(0,629) (5,08) (6,16)

Diferencia - 0,110 1,49 0,69(C-P)

Duraciónamortiguación (s)

1º Pico fuerzavertical (BW)

2º Pico fuerzavertical (BW)

TABLA 6.-Resultados obtenidos

en el testde amortiguación

de la caída conlos dos grupos

estudiados; piescavos (C)

y planos (P)[media ± desviación

estándar (rango)]

Pico deaceleración (BW)

1 2 1 2 1 2 1 2 1 2 1 2 1 2

Cavos 1,608 3,017 0,594 0,282 1,17 1,60 0,60 1,35 1,24 2,38 - 0,26 - 0,33 0,29 0,31±0,022 ±0,059 ±0,031 ±0,026 ±0,05 ±0,32 ±0,03 ±0,24 ±0,07 ±0,23 ±0,03 ±0,06 ±0,03 ±0,04(0,064) (0,167) (0,084) (0,084) (0,15) (0,93) (0,08) (0,63) (0,19) (0,62) (0,09) (0,16) (0,10) (0,11)

Planos 1,609 3,059 0,618 0,276 1.21 1,81 0,60 1,55 1,18 2,43 - 0,27 -0,33 0,30 0,28

±0,029 ±0,059 0,019 ±0,025 ±0,08 ±0,22 ±0,07 ±0,26 ±0,08 ±0,20 ±0,04 ±0,02 ±0,03 ±0,04(0,080) (0,164) (0,065) (0,077) (0,25) (0,62) (0,21) (0,72) (0,22) (0,56) (0,09) (0,07) (0,10) (0,11)

Todos 1,609 3,040 0,607 0,279 1,19 1,72 0,60 1,46 1,21 2,41 - 0,27 - 0,33 0,29 0,30±0,025 ±0,061 ±0,027 ±0,025 ±0,07 ±0,28 ±0,05 ±0,26 ±0,08 ±0,21 ±0,03 ±0,04 ±0,03 ±0,04(0,080) (0,206) (0,086) (0,092) (0,29) (1,09) (0,21) (0,86) (0,27) (0,70) (0,09) (0,16) (0,10) (0,14)

DIF(C-P)-0,001 - 0,042 - 0,024 0,005 - 0,04 - 0,21 0,01 - 0,20 0,07 - 0,05 0,01 0,00 - 0,01 0,00

Velocidad (m/s)

Duración apoyo (s)

Pico defrenado (BW)

Valle(BW)

Pico deaceleración (BW)

Pico defrenado (BW)

Fuerzas verticales Fuerzas anteposteriores

Page 229: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

FUERZAS DE REACCIÓN DEL SUELO EN PIES CAVOS Y PLANOS

VOLUMEN XXII - N.º 108 - 2005

291A M D

duales en la forma de andar para reducir laspresiones en determinadas partes del pie. Unmecanismo parecido podría darse en las fuer-zas de reacción al caminar y correr.

Los sujetos con pies con tendencia a recibirfuerzas elevadas podrían modificar conscienteo inconscientemente, como mecanismo de pro-tección, los patrones de marcha y carrera redu-ciendo el riesgo de lesión. Los sujetos estudia-dos no presentaban lesiones previas, por lo quese podían haber dado estas adaptaciones.

Los valores en los picos de fuerza en los testsmáximos han sido superiores en los pies cavosy, pese a que las diferencias no han sido signifi-cativas, pueden tener importancia ya que éstosson movimientos que los sujetos estudiados noestán acostumbrados a realizar (los sujetos hansido sedentarios) y por lo tanto no han desa-rrollado mecanismos de adaptación para dis-minuir esos picos de fuerza.

Los tiempos de duración del apoyo en todos lostests máximos han sido superiores en los piesplanos, pero al igual que sucede en los picos defuerza las diferencias no han sido significativas.Estos valores pueden ser debidos a que los suje-tos con pies planos tienen una mayor superficieque entra en contacto con el suelo.

Teniendo en cuenta las posibles adaptacionesque realizarían sujetos que reciben fuerzas dereacción elevadas en relación a su estructura depie, el riesgo de padecer lesiones se veríaincrementado en la iniciación deportiva, al rea-lizar movimientos nuevos a los que no estánadaptados. Las diferencias significativas en esteestudio se encontraban justamente en los movi-mientos máximos, gestos a los que, por sernuevos, aún no se han adaptado los sujetosestudiados, ya que han sido sedentarios.

Del grupo de los pies cavos, 6 de los sujetosmanifestaban padecer molestias o dolor en lospies, sin embargo, ningún sujeto con pies pla-nos manifestaba estos síntomas.

Sería interesante contemplar la posibilidad derealizar este estudio con los sujetos llevando el

mismo tipo de calzado o descalzos, para podercompararlos en unas mismas condiciones. Tam-bién podríamos considerar el poder realizar esteestudio con plataformas de presiones, donde po-siblemente sí se encontrarían diferencias entreestos dos tipos de pies, ya que si consideramosque las fuerzas son similares y la superficie decontacto es menor en los pies cavos, consecuente-mente, sus presiones serían mayores en determi-nadas partes del pie. Ésta, posiblemente, sea unade las causas de los dolores que manifiestan lossujetos con pies cavos.

CONCLUSIONES

– El grado de significación estadística no tie-ne por qué ser el límite que marque el mayoro menor riesgo de futura lesión asociada alas fuerzas de reacción. Pequeñas y no sig-nificativas diferencias podrían marcar unincremento sustancial del riesgo. En estesentido, cabe destacar los mayores valoresregistrados en los pies cavos en los movi-miento máximos, en los que existiría unmayor riesgo para ellos.

– Las mínimas o nulas diferencias observa-das en los patrones de movimiento podríanexplicarse por adaptaciones que realiza elsujeto en el movimiento y, así, aun teniendopies cavos, logra valores en las fuerzas dereacción similares a los pies planos y mien-tras esto suceda le protege de lesiones.

– Los sujetos con tipologías de pie extremastendrían un mayor riesgo de padecer lesio-nes en la iniciación deportiva, al enfrentarsea nuevos movimientos a los que se deberánadaptar para no mostrar elevados valoresen las fuerzas de reacción.

AGRADECIMIENTOS:

Este articulo ha sido realizado gracias a losproyectos DIMOCLUS del Ministerio de Cien-cias y Tecnología y PREDACOM de laConsegería de Educación y Ciencia de la Juntade Castilla-La Mancha.

Page 230: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

ABIÁN VICÉN J.,et al.

ARCHIVOS DE MEDICINA DEL DEPORTE

292A M D

1. Meana M. Biomecánica del vendaje funcional preventivo detobillo en deportes de colaboración-oposición, Tesis doc-toral. Universidad de Castilla la Mancha. Toledo, 2002.

2. Robbins SE, Hanna AM. Runing-related injury preventionthrough barefoot adaptations. Med Sci Sports Exerc 1987;19(2):148-56.

3. Sirgo G, Méndez B, Egocheaga J, Maestro A, Del Valle M.Problemática en la clínica diaria en relación a variosmétodos de análisis de la huella plantar. Archivos de Me-dicina del Deporte 1997;14(61):381-7.

4. Ramiro J. El calzado para carrera urbana, criteriosbiomecánicos de diseño. IBV. Valencia, 1989.

5. Kaufman KR, Brodine SK, Shaffer RA, Johnson CW, CullisonTR. The effect of foot structure and range of motion onmusculoskeletal overuse injuries. Am J Sports Med1990;27(5):585.

6. Hernández R, Hernández H. Alteraciones ortopédicas fre-cuentes. Revista médica de Santiago. (on line) http://www.rms.cl/internos/anteriores_internos/ Pie%20plano.htm(Consulta: 20 de Julio de 2004).

7. Moya H. Malformaciones congénitas del pie y pie plano.Revista chilena de pediatría 2000;71(3).

8. Brostrom E, Haglund-Aderlind Y, Hagelberg S, CresswellAG. Gait in children with juvenile chronic arthritis. ScandJ Rheumatol 2002;31:317-23.

9. Cairns MA, Burdettm RG, Pisciotta JC, Sheldon RS. Abiomechanical analysis of racewalking gait. Med Sci SportsExerc 1986;18(4):446-53.

10. Li L, Hamill J. Characteristics of the vertical ground reactionforce component prior to gait transition. American Alliancefor Health, Physical Education, Recreation and Dance2002;73(3):229-37.

11. Willson J, Torry MR, Decker MJ, Kernozek T, Steadman JR.Effects of walking poles on lower extremity gait mechanics.Med Sci Sports Exerc 2001;33(1):142-7.

12. Challis JH. The variability in running gait caused by forceplate targeting. J Appl Biomech 2001;17:77-83.

13. Komi PV, Follhofer A, Schmidtbleicher D, Frick U.Interaction between man and shoe in running: considerationfor a more comprehensive measurement approach. Int JSports Med 1987;8(3):196-202.

B I B L I O G R A F I A

1 4. Kram R, Powell J. A treadmill-mounted force platform. JAppl Physiol 1989;67(4):1692-8.

15. Munro CF, Miller DI, Fuglevand AJ. Ground reaction forcesin running: a reexamination. J Biomech 1985;20(2):147-55.

16. White SC, Gilchrist LA, Christina KA. Within-dayaccommodation effects on vertical reaction forces fortreadmill running. J Appl Biomech 2002;18:74-82.

17. Young WB, James R, Montgomery I. Is muscle power relatedto running speed with changes of direction?. J Sports MedPhys fitness 2002;42:282-8.

18. Bauer JJ, Fuchs RK, Smith GA, Snow CM. Quantifying forcemagnitude and loading rate from drop landings thay indu-ce osteogenesis. J Appl Biomech 2001;17(2):142-52.

19. Dufek J, Bates BT. The evaluation and prediction of impactforces during landings. Med Sci Sports Exerc 1990;22(3):370-7.

20. Hargrave MD, Carcia CR, Gansneder BM, Shultz SJ. Subtalarpronation does not influence impact forces or rate of loadingduring a single-leg landing. Journal of Athletic Training2003;38(1):18-23.

21. Seegmiller JG, McCaw ST. Ground Reaction forces amonggymnasts and recreational athletes in drop landings. Journalof Athletic Training 2003;38(4):311-4.

22. Zhang SN, Bates BT, Dufek JS. Contributions of lowerextremity joints to energy dissipation during landings. MedSci Sports Exerc 2000;32(4):812-9.

23. Esparza F. Manual de cineantropometría. Pamplona.FEMEDE, 1993.

24. Viladot A. Quince lecciones sobre patología del pie, 1ª Edi-ción. Barcelona. Toray, 1989;241-4.

25. Hernández, R. Morfología funcional deportiva. InformaciónServei de docencia e investigación. V. II. Secretaría Generalde L´esport. 1990.

26. Plas F, Viel E, Blanc Y. La marcha humana. Masson. Bar-celona, 1984.

27. Redfern M, Cham R, Gielo-perczak K, Groè R, Hirvonen M,Lanshammar H, et al. Biomechanics of slips. Ergonomics2001;44(13):1138-66.

28. Grampp H, Willson J, Kermozek T. The plantar loadingvariations to umhill and downhill gradients during treadmillwalking. Foot Ankle Int 2000;21(3):227-31.

Page 231: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

AVANCES DEL VENDAJE FUNCIONALDE TOBILLO EN EL DEPORTE

VOLUMEN XXIII - N.º 113 - 2006

219A M D

REVISIÓNVolumen XXIIINúmero 113

2006Págs. 219-229

CORRESPONDENCIA:Javier Abián Vicén. Laboratorio de Biomecánica, Facultad de Ciencias del Deporte,Campus Tecnológico de la Fábrica de Armas,Universidad de Castilla-La Mancha.Avenida Carlos III S/N. 45071 Toledo

Aceptado: 30-05-2005 / Revisión nº 18930-05-2005 / Revisión nº 18930-05-2005 / Revisión nº 18930-05-2005 / Revisión nº 18930-05-2005 / Revisión nº 189

AVANCES DEL VENDAJE FUNCIONAL DE TOBILLO EN EL DEPORTE

JavierAbián1

Luis M.Alegre1

Jose M.FernándezRodríguez2

Amador J.Lara1

MartaMeana3

XavierAguado1

1Facultadde Cienciasdel Deportede ToledoUCLM2EscuelaUniversitariade Enfermeríay Fisioterapiade ToledoUCLM3Facultadde Cienciasde la ActividadFísicay el DeporteUCAM

ADVANCES OF ANKLE TAPING IN SPORT

USOS DEL VENDAJE FUNCIONALPREVENTIVO EN EL DEPORTE

Hoy en día es frecuente el uso en el deporte delos vendajes funcionales preventivos y terapéuti-cos. Los primeros se utilizan para proteger lasestructuras músculo-tendinosas y cápsulo-ligamentosas de determinadas lesiones. Sepractican dos tipos básicos: con vendas elásti-cas y con inelásticas. Los terapéuticos se utili-zan para la recuperación después de una le-sión1-4. En este artículo se va a realizar unarevisión de los estudios con vendajes preventi-vos de tobillo en el deporte y se van a formularunas hipótesis de futuros trabajos, en base aunos ensayos biomecánicos con plataforma defuerzas y a lo que se ha encontrado en la biblio-grafía.

En los deportes colectivos, el uso de los venda-jes es una práctica habitual y en ocasiones obli-gada3. En la élite deportiva, este hecho se vereforzado por convenios que algunos clubestienen con casas comerciales, para proteger lasinversiones que han realizado, minimizando elriesgo de que un jugador quede lesionado amitad de temporada5. Así, Camacho6 relata queen la NBA es algo muy frecuente. La utilizaciónde vendajes por los grandes jugadores ha hechoque esta práctica se extienda hacia otros estratosdel deporte y jugadores de menor nivel, quetratan de imitar a las grandes estrellas, popula-rizando el uso y, a veces, abuso de estos méto-dos preventivos.

En ocasiones, en vez de los vendajes funciona-les preventivos, se usan otros métodos de suje-ción, como son las ortesis. Éste es un métodomás sencillo y menos costoso tanto a niveleconómico como de tiempo7,8. Aún así, debe-mos tener en cuenta como ventajas de los ven-dajes funcionales, que son personalizados yque se crean para la ocasión y para una perso-na determinada, mientras que las ortesis sonimpersonales, no tienen en cuenta las caracte-rísticas individuales de los sujetos y, en ocasio-nes, poseen elementos rígidos que impiden suutilización en competición.

En la bibliografía encontramos numerosos artí-culos en los que se estudian diferentes tipos deortesis entre sí, o comparándolas con los ven-dajes (Tabla 1). Probablemente esta abundanciade bibliografía se vea incentivada por intereseseconómicos que tienen como objetivo demos-trar las bondades de las ortesis.

La bibliografía científica sobre los vendajesfuncionales preventivos es mucho menos exten-sa. Dentro de ella hemos encontrado 4 temasprincipales, en relación con la biomecánica,que a continuación se exponen:

– El estudio del posible descenso del rendimien-to, como por ejemplo, en la capacidad desalto o en el tiempo en realizar un determi-nado circuito3,10,11,26,27,30,34-36,38,41,44,45 (Tabla 2).Los estudios del salto con vendaje se cen-tran en medir si se modifica la altura que

Page 232: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

ABIÁN J.,et al.

ARCHIVOS DE MEDICINA DEL DEPORTE

220A M D

TABLA 1.Artículos revisadosdonde se estudiandiferentes tipos de

ortesis de tobillo (VFP = vendaje

funcional preventivode tobillo

M = mujeresH = hombres)

Autor Sujetos y sexo Edad nº Ortesis Tipo de Ortesis VFP

Alves et al9 13M 26.26±4.43 4 Stirrup, ALP, Swede-O, Kallassy No14H

Bonnell y Goldie10 24 24.8±4.4 2 Swede-O y OAPL SíBurks et all11 30 2 Kallassy y Swede-O SíCarroll et al12 6 M 25.4 1 Swede-O NoCordova et al13 24H 23.3±3.4 2 Aircast sport-stirrup y Active Ankle NoCordova et al14 8 M 23.6±1.7 2 Active Ankle training brace y McDavid 199 No

12H

Gehlsen et al15 10H 23.5±3.7 3 Stirrup, Active Ankle y Swede-O SíGreene y Hillman16 7 M 18-21 1 ALP (Ankle ligament protector) SíGreene y Roland17 15M 18-35 1 ALP No

15H

Greene y Wight18 12H 18-22 3 Stirrup, ALP y Swede-O NoGross et al19 9 M 18-22 1 Stirrup Sí

2H

Gross et al20 8 M M=26.1±5.1 2 Stirrup y Swede Sí8H H=26±1.6

Gross et al21 8 M 22.±7.2 1 ALP Sí8H 27±2 1

Gross et al22 8 M 24.6±5.1 2 ALP y Stirrup No8H 20.1±1.6

Gross et al23 9 M 18-36 2 ALP y Aircast sport-stirrup No14H

Hals et al24 17M 16.2±6 1 Aircast sport-stirrup No8H

Hubbard y Kaminski25 8 M 21.6±1.7 2 Swede-O Ankle y Aircast Air-Stirrup Sí8H

Kimura et al26 10M 18-35 1 Stirrup No8H

Lindley et al27 11H 21.1±1.7 3 Stirrup. ALP y Active Ankle Trainer SíLocke et al28 18M 15.83±1.01 1 Donjoy Rocketsoc No

8H

Lofvenberg y karrholm29 13 36 1 Ortesis creada por los investigadores: No

Mackean et al30 11H 17-25 3 Aircast, Active ankle y Swede-O Sí

Macpherson et al31 25H 16±0.99 2 Stirrup y Rocketsoc No

Martin y Harter32 5 M 23.4±2.5 2 Swede-O y Aircast Sí5H

McCaw y Cerullo33 5 M 21±2 3 Swede-O, Aircast y Active Ankle Sí9H

Metcalfe et al34 10M 26.5±3.69 1 Swede-O-Universal Sí

Paris35 18H 17.6±1.7 2 Swede-O y New cross McDavid Sí

Paris y Sullivan36 36H 22.3±2.33 3 Swede-O y New cross, Stirrup, Sísubtalar stabilizer braze

Pienkowski et al37 12H 15-18 3 Stirrup, kallassy y Swede-O No

Rieman et al38 5 M 17-26 1 Aircast Sí9H

Shapiro et al39 5H 20-65 8 McDavid A-101,Stirrup, Gelcast, Super-8, SíDonjoy, FG-062, Eclipse Excel Ankle support

stabilizer y High top Ankle Support

Sitler et al40 16H 19.14±1.34 1 SEirrup NoVerbrugge41 26H 18-28 1 Air-Stirrup Brace SíWiley y Nigg42 4 M 24.2±3.8 1 Maleoloc No

8HYaggie y Kinzey43 30 24.03±0.76 2 McDavie A101 y Perform 8 Steady No

Step lateral ankle stabilizer

Page 233: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

AVANCES DEL VENDAJE FUNCIONALDE TOBILLO EN EL DEPORTE

VOLUMEN XXIII - N.º 113 - 2006

221A M D

alcanza el sujeto11,30,34,41,45. La mayoría deestos estudios han descrito descenso de lamisma11,30,41. Es destacable que algunos au-tores que estudian ortesis no encuentrenesta pérdida de altura en el salto24,28,42,43.

– La medición de la restricción de movimientoo ROM (range of movement = rango demovimiento). La movilidad de tobillo pue-de ser medida de forma estática o de formadinámica dentro del movimiento seleccio-nado, obteniendo valores diferentes en am-bas situaciones. Medir el ROM de formaestática es relativamente sencillo con ungoniómetro. Sin embargo, hacerlo de formadinámica durante la práctica deportiva escomplejo, puede interferir en la propiapráctica y son necesarios instrumentos mássofisticados, como es el caso de cámaras dealta velocidad o electrogonió-metros15,25,27,39,46-49.

– La fatiga del vendaje o pérdida de las propie-dades mecánicas a lo largo de la competi-ción o entrenamiento es otro aspecto estu-diado16,19-21,32,34,44,45,50. Éste es uno de los ejescentrales de la tesis de Meana3. La mayoríade los autores coinciden en que el vendaje sefatiga como cualquier otro material y quecon el tiempo pierde parte de las propieda-des para las que ha sido confecciona-do16,34,44, por lo que sería conveniente cam-biar o reforzar el vendaje cada cierto tiempo.En el mayor desgaste del vendaje funcionalpreventivo influyen algunas característicasindividuales como es el caso del tipo de pieo la altura. Los sujetos altos de pies cavoslos desgastan en mayor medida que los ba-jos de pies planos3 por lo que deberíanreconstruirlo con mayor frecuencia.

– Finalmente, hay un cierto número de revisio-nes bibliográficas y de trabajos en los que se

TABLA 2.Estudios sobre losposibles descensosdel rendimiento conla utilización delvendaje funcionalde tobilloM= mujeres, H=hombres, SIG=significaciónestadística, ns= nosignificativa; *=p<0.05;***=p<0.001

Autor Sujetos Sexo Edad Pruebas % Descenso rendimiento Sig.

Bannell y Goldie10 24 24.8±4.4 Equilibrio sobre una Equilibrio:42.86 *plataforma de fuerzas Tocar el suelo: 536.36 *

Burks et al 11 30 Salto vertical 4.00 *10 yardas carrera lanzada 1.60 *

40 yardas sprint 3.50 *Salto horizontal 0.00 ns

Mackean et al30 11 H 17-25 Salto vertical 1.59 *Lanzamiento en salto 9.09 ns

Correr tres distancias cortas 2.86 nsa máxima velocidad

Metcalfe et al34 10 M 26.5±3.69 Salto vertical 4.60 ***Test de agilidad SEMO 2.74 ***

Paris35 18 H 17.6±1.7 Velocidad (50 yardas) 0.15 nsNelson test de equilibrio 3.13 ns

Test de agilidad SEMO 1.57 nsSalto vertical 2.38 ns

Paris y Sullivan36 36 H 22.3±2.33 Fuerza de inversión Promedio 6.94 nsFuerza inversión pico 7.69 ns

Fuerza eversión promedio 1.56 *Fuerza eversión pico 4.00 *

Rieman et al38 14 5M 17-26 1º Pico (máx. amortiguación) 3.71 ns9H 2º Pico (máx. amortiguación) 2.58 ns

1º pico (rígida) 12.20 ns2º pico (rígida) 14.95 ns

Verbrugge41 26 H 18-28 40 yardas sprint 0.20 nsSalto vertical 2.88 ns

Carrera de agilidad 0.00 ns

Page 234: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

ABIÁN J.,et al.

ARCHIVOS DE MEDICINA DEL DEPORTE

222A M D

aportan hipótesis variadas5,51-57 que no obe-decen a resultados de trabajos científicossino a ideas que surgen de la práctica deprofesionales. Así, por ejemplo, Hume yGerrard51 nos dicen que el vendaje funcio-nal preventivo nos da la posibilidad de re-ducir el riesgo de lesión pero que despuésde 20 minutos de ejercicio necesitaría serreforzado para que no perdiera su eficacia.

En este artículo no vamos a analizar los traba-jos que estudian si el vendaje cumple la funciónpara la que había sido colocado, ni los queestudian la fatiga del vendaje, sino aquellos queabordan la posibilidad de disminución del ren-dimiento y aparición de nuevas lesiones.

POSIBLES DESVENTAJAS

Los beneficios de la correcta utilización de losvendajes están más que demostrados. Sin em-bargo cuando el uso no es el indicado, puedendarse una serie de "efectos secundarios" que va-mos a describir en este apartado.

Neiger2 dice que hay que desconfiar de la colo-cación sistemática y repetitiva de los vendajes,debido a la dependencia que pueden provocaren el sujeto y llevarle a que esté expuesto a unalesión en el momento en que no esté protegido.Por este motivo, hay diversos autores que sugie-ren que en la rehabilitación de lesiones seríaadecuado combinar la utilización del vendajecon sesiones específicas de propiocepción, queayuden al sujeto a conseguir un control activoarticular y neuromuscular, para que el periodode uso del vendaje sea limitado2,51,58.

Después de la utilización del vendaje funcionalpreventivo la zona donde ha sido colocadopodría quedar expuesta a un mayor riesgo delesión. En los estudios en que se mide el ROMuna vez retirado el vendaje, se encuentran valo-res superiores con respecto a cuando no seutiliza. Esto conlleva que las estructuras de esazona se han "acostumbrado" a la ayuda delvendaje y una vez retirado les cuesta más volvera realizar su función2. Algunos autores achacan

la mayor laxitud de la zona donde se encuentrael vendaje a un aumento de la temperatura ypor lo tanto un aumento también en laextensibilidad de las estructuras que se encon-traban bajo el vendaje44. Estos autores registranincrementos en la temperatura de hasta 2.6 ºCsuperiores en el grupo con vendaje funcionalpreventivo con respecto a un grupo controldespués de realizar ejercicios variados que in-cluían saltos.

Otro factor a tener en cuenta es la piel que seencuentra en contacto íntimo con el vendaje. Enella se pueden dar efectos como la hipersensibi-lidad (reacciones a determinados componentesdel vendaje), las irritaciones mecánicas causa-das por fuerzas de tracción altas y las irritacio-nes químicas, producidas por las sustanciasque contiene la masa adhesiva4.

Cuando se realiza un vendaje, se deben consi-derar algunos factores que a veces no se tienenen cuenta, como son; la capa protectora de lapiel (que se encuentra formada por ácidosgrasos, escamas y pelos) y la actividad que se vaa realizar. Jurgen y Asmussen4 dicen que elsudor puede influir de forma significativa sobreel efecto del vendaje y su utilidad. El vendajepuede levantarse y perder su eficacia, inclusolimitar algún movimiento diferente al que sepretendía sobrecargando otras estructuras pu-diendo provocar una lesión. El vendaje funcio-nal preventivo, al limitar el ROM puede llevar ala necesidad de compensar con la utilización deotras estructuras que a largo plazo provoquedolor o actitudes viciosas.

FUERZAS DE REACCIÓN

En este apartado se va a discutir, mediante lasmodificaciones en las fuerzas de reacción delsuelo que provocaría el vendaje, la posible dis-minución en la eficacia y riesgo de lesión. Sehan analizado patrones de movimiento (mar-cha y carrera) y movimientos máximos (salto,amortiguación de caída y cambio de dirección).Para ello se han hecho unos estudios piloto enlos que se ha aplicado un vendaje funcional

Page 235: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

AVANCES DEL VENDAJE FUNCIONALDE TOBILLO EN EL DEPORTE

VOLUMEN XXIII - N.º 113 - 2006

223A M D

preventivo inelástico en el tobillo conprevendaje, que limitaba los movimientos desupinación y extensión. Estos estudios nos per-miten postular una serie de hipótesis de futurasinvestigaciones y mostrar los gráficos de esteapartado. Los ensayos mostrados en este apar-tado han sido realizados sobre una plataformade fuerzas piezoeléctrica Kistler 9281 CA(Kistler, Suiza), colocada bajo el pavimento sin-tético de un polideportivo.

Marcha

En las fuerzas de reacción verticales en la mar-cha, cabría esperar un incremento en los valoresde los picos de fuerza, así como un descensodel valor del valle, debidos a un menor controlpropioceptivo de los músculos que atraviesan eltobillo vendado. En las fuerzas antero-posteriores se daría un incremento del pico defrenado, por el menor control de esa articula-ción y un descenso del pico de aceleracióndebido al menor rango de la extensión de tobi-llo en la impulsión. Los ensayos que hemosrealizado para mostrar la figura se llevaron acabo a una velocidad de 1.6 m/s y se normalizóel eje de abscisas en porcentajes respecto a laduración del apoyo (Figura 1). La frecuencia demuestreo fue de 500 Hz.

Las fuerzas de reacción en marcha han sidoabundantemente estudiadas pero no se ha en-contrado ningún estudio sobre sus modifica-ciones con vendaje funcional preventivo de to-billo.

Carrera

Igual que en la marcha, esperamos encontrarun incremento en los picos de fuerza verticalesdurante el apoyo, propiciados por un menorcontrol de los músculos y menor propiocepciónen esa zona. En las fuerzas anteroposteriores,al igual que en la marcha, se vería un incremen-to del pico de frenado y un descenso en el picode aceleración, lo que podría causar un descen-so de eficacia en el movimiento (Figura 2). Losensayos para obtener la figura han sido realiza-dos a una velocidad de 3 m/s y se ha normaliza-

do el eje de abscisas en porcentajes respecto a laduración del apoyo. La frecuencia de muestreoutilizada fue de 500 Hz.

Al igual que sucede en la marcha, las fuerzas dereacción en carrera han sido abundantementeestudiadas pero no se ha encontrado ningúnestudio sobre las modificaciones que provoca-ría en ellas el vendaje funcional preventivo detobillo. El valor del pico de frenado de lasfuerzas de reacción verticales ha sido frecuente-mente vinculado al riesgo de lesiones de fatigaen deportes de resistencia. En este sentido elvendaje podría incrementar ese riesgo.

Fuerzas de reacción en la carrera

-0.5

0

0.5

1

1.5

2

2.5

% Duración apoyo

Fuerz

a(B

W)

Fuerza vertical sin vendaje

Fuerza vertical con vendaje

Fuerza anteroposterior con vendaje

Fuerza anteroposterior sin vendaje

10 20 30 40 50 60 70 80 90 1000

FIGURA 1.Hipótesis de lasposibles variacionesen las fuerzas dereacción verticales(negro) yanteroposteriores(gris) en la marchadebidas al uso deun vendajefuncional preventivode tobillo que limitela supinación yextensión. Ensayosrealizados a unavelocidad de 1.6 m/s. (BW = veces elpeso corporal)

FIGURA 2.Hipótesis de lasposibles variacionesen las fuerzas dereacción verticales(negro) yanteroposteriores(gris) en la carrera,debidas al uso deun vendajefuncional preventivode tobillo que limitela supinación yextensión. Ensayosrealizados a unavelocidad de 3 m/s.(BW = veces el pesocorporal)

Fuerzas de reacción en la marcha

-0.5

-0.3-0.1

0.1

0.30.5

0.7

0.9

1.11.3

1.5

% Duración apoyo

Fuerz

a(B

W)

Fuerza vertical sin vendaje

Fuerza vertical con vendaje

Fuerza anteroposteriorcon vendaje

Fuerza anteroposteriorsin vendaje

10 200 30 40 50 60 70 80 90 100

Page 236: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

ABIÁN J.,et al.

ARCHIVOS DE MEDICINA DEL DEPORTE

224A M D

Salto con contramovimiento

En la batida de un salto con contramovimiento(CMJ) pensamos que se pueden dar descensosen el pico de máxima fuerza y en el impulso deaceleración (con lo que el salto alcanzaría me-

nor altura) propiciados por la limitación quetenemos en el rango de movimiento del tobillo(Figura 3). Los ensayos para obtener la figurahan sido realizados en un CMJ con una fre-cuencia de muestreo de 500 Hz.

Sin embargo, en este apartado nos surgen algu-nas dudas de cómo se comportará el tobillocuando el vendaje sea elástico, ya que este tipode vendaje podría llegar a ayudar a saltar másdebido a la restitución del vendaje en la faseconcéntrica del salto. Hay diversos autores queestudian la influencia del vendaje en el rendi-miento del salto vertical11,30,34,41,45, pero ningunode ellos analiza las fuerzas de reacción delsuelo en la batida del salto. Como se ha comen-tado la mayoría de autores describen descensoen la altura del salto con vendaje.

Amortiguación de caída

En la amortiguación de una caída, el vendajepodría incrementar el segundo pico de fuerzadebido a un menor control de la musculaturaextensora de tobillo, limitando la tensión ejerci-da por el músculo para que ese impacto no seatan brusco (Figura 4). Por otro lado el vendajetambién podría provocar que ambos picos defuerza (1º y 2º) sucedieran antes en el tiempo38 yuna menor duración en la amortiguación. Estasposibles modificaciones perjudicarían la amor-tiguación y podrían favorecer el riesgo de lesio-nes.

Los ensayos para obtener la figura han sidorealizados dejando caer al sujeto desde unaaltura de 0.75 m con la metodología descritapor Abián et al59. La frecuencia de muestreoutilizada fue de 1000 Hz.

Barceló45, analizando la amortiguación des-pués de realizar un CMJ, encontró valoressignificativamente superiores en el segundopico de fuerza debido a la utilización de dostipos diferentes de vendajes funcionales preven-tivos de tobillo. En el estudio de Barceló losvalores del primer pico de fuerza fueron inferio-res en las situaciones con vendaje, pero pensa-mos que al incrementar la altura de caída los

Fuerzas de reacción en el salto

0

0.5

1

1.5

2

2.5

% Duración de la batida

Fuerz

aVertic

al (

BW

)

Sin vendaje

Con vendaje

10 20 30 40 50 60 70 80 90 1000

3

Fuerzas de reacción en la amortiguaci n de la caídaó

0

1

2

3

4

5

6

7

8

9

% Duración de la amortiguación

Fuer

zaVe

rtic

al (

BW

)

5 10 15 20 25Sin vendaje

Con vendaje

30 35

Fuerzas de reacción en el cambio de dirección

0

0.5

1

1.5

2

2.5

% Duración del apoyo

Fuerz

aResu

ltante

(BW

)

Sin vendaje

Con vendaje

0 20 40 60 80 100

FIGURA 3.Hipótesis de las

posibles variacionesen las fuerzas de

reacción verticales(negro) en un salto

concontramovimientodebidas al uso de

un vendajefuncional preventivode tobillo que limite

la supinación yextensión. (BW =

veces el pesocorporal)

FIGURA 4.Hipótesis de las

posibles variacionesen las fuerzas de

reacción en laamortiguación de

una caída debidasal uso de un

vendaje funcionalpreventivo de tobillo

que limite lasupinación y

extensión. Ensayosrealizados cayendo

desde una mesa a0.75 m de altura.

(BW = veces el pesocorporal)

FIGURA 5.Hipótesis de las

posibles variacionesen la resultante, de

las fuerzas dereacción

anteroposteriores ymediolaterales, en

un cambio dedirección a máxima

velocidad debidasal uso de un

vendaje funcionalpreventivo de tobillo

que limite lasupinación y

extensión. (BW =veces el peso

corporal)

Page 237: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

AVANCES DEL VENDAJE FUNCIONALDE TOBILLO EN EL DEPORTE

VOLUMEN XXIII - N.º 113 - 2006

225A M D

valores del primer pico de fuerza pudieran sertambién superiores.

Cambio de dirección

En un cambio de dirección brusco durante lacarrera esperamos encontrar unos valores supe-riores en el pico de frenado de la fuerza resul-tante por la limitación del vendaje. En el pico deaceleración esperamos encontrar valores infe-riores, por una menor impulsión debida a larestricción del rango de movimiento del tobillo(Figura 5). También se daría con el vendaje unamayor duración en el apoyo del pie en el suelodebido a que se realizaría el movimiento conmenor explosividad que sin vendaje. Las fuer-zas de reacción en el cambio de dirección fue-ron estudiadas por Meana3, que no encontródiferencias significativas en los valores de lospicos de fuerza con la utilización del vendajefuncional preventivo de tobillo. Pensamos queforzando algo más el movimiento se podríanencontrar diferencias.

Para obtener la figura se hizo en un cambio dedirección de 120º utilizando la metodologíadescrita por Abián et al60. La frecuencia demuestreo utilizada fue de 500 Hz.

La incidencia del vendaje en los cambios dedirección ha sido estudiada por varios auto-res3,20,21,34,35,41,45,61. Excepto Meana3,61 ninguno haestudiado las fuerzas de reacción del suelo.

PERSPECTIVAS DE FUTURO

La biomecánica de diferentes movimientos conarticulaciones sometidas a vendajes funcionalespreventivos de tobillo se ha venido estudiandodesde hace años. Predominan estudios estáti-cos de las restricciones en la amplitud articular.No obstante, hay muy pocos estudios que ana-licen el comportamiento del vendaje realizandomovimientos de situaciones deportivas concre-tas y, de éstos, casi ninguno analiza las fuerzasde reacción del suelo. Las fuerzas de reacciónnos van a dar valores de lo que sucede mientrasestamos realizando la acción deportiva y nos

van a acercar a la situación real en la que sucedeel movimiento, ya que no interfieren en el sujetoni en el juego. Mediante las fuerzas de reacciónvamos a poder comprobar si existen o no modi-ficaciones en la eficacia de las técnicas deporti-vas y por otro lado podremos evaluar si aumen-ta el riesgo de nuevas lesiones.

Por último sería interesante el estudio en situa-ciones deportivas concretas de diferentes tiposde vendaje funcional preventivo de tobillo,como por ejemplo, elástico e inelástico y lacomparación de éstos con ortesis y prótesis.

AGRADECIMIENTOS

Agradecemos a Joma y a Maria Laguna Nieto sucolaboración en la realización de este trabajo.

RESUMEN

El objetivo de este artículo ha sido realizar unarevisión de los estudios con vendajes funciona-les preventivos de tobillo en el deporte y formu-lar unas hipótesis de futuros trabajos en base aunos ensayos biomecánicos con plataforma defuerzas.

En relación a la biomecánica de los vendajesfuncionales preventivos de tobillo en la biblio-grafía encontramos cuatro temas principales: elestudio del posible descenso del rendimiento,la medición de la restricción de movimiento, lafatiga del vendaje y finalmente las revisionesbibliográficas y trabajos que aportan hipótesispara posibles investigaciones. Podemos con-cluir que predominan estudios estáticos de lasrestricciones del vendaje en la amplitud articu-lar y sin embargo hay muy pocos estudios queanalicen el comportamiento del vendaje reali-zando movimientos de situaciones deportivasconcretas.

Pese a que los beneficios de la utilización de losvendajes están demostrados, cuando su uso noes el adecuado pueden darse una serie de efec-tos no deseados. A menudo, la dependencia

Page 238: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

ABIÁN J.,et al.

ARCHIVOS DE MEDICINA DEL DEPORTE

226A M D

1. Bové T. El vendaje funcional. Barcelona. Doyma, 1989.

2. Neiger H. Los vendajes funcionales, aplicaciones en trau-matología del deporte y en reeducación. Barcelona. Masson,1990.

3. Meana M. Biomecánica del vendaje funcional preventivode tobillo en deportes de colaboración-oposición, Tesis doc-toral. Universidad de Castilla la Mancha. Toledo, 2002.

que pueden provocar en el sujeto, le llevará aque esté expuesto a una lesión en el momentoen que no esté protegido.

El artículo acaba analizando movimientos bási-cos, presentes en muchos deportes: marcha, ca-rrera, salto, cambio de dirección y amortiguaciónde caída. En estos movimientos se presentanresultados de la bibliografía y de estudios pilotopropios, en los que se analiza la cinética delcontacto en el suelo con y sin vendaje funcionalpreventivo de tobillo, de cara a proponer nuevasvías de investigación, que aborden no sólo laeficacia del vendaje sino también la posible dis-minución en la eficacia de gestos deportivos y elriesgo añadido de nuevas lesiones.

Palabras clave: Biomecánica. Cinética. Depor-te. Tobillo. Prevención de lesiones. Vendaje fun-cional. Fuerzas de reacción.

SUMMARY

The purposes of this paper were to review theresearch on prophylactic ankle taping in sport,and to formulate hypotheses for futureresearches, on the basis of biomechanical trialson a force platform.

There are four main topics on prophylacticankle taping in the literature: the study of apossible performance decrease, the measur-

ement of the limitation in the range of motion(ROM), the fatigue of the ankle taping, andfinally, the reviews and researches thatcontribute with hypotheses for further works.Most studies have been carried out in staticconditions to test the limitations in the ROM;however, there are few studies where the ankletaping response during sports tasks or specificmovements had been analysed.

Although the benefits of the use of ankle tapingare well established, when it is misused,undesirable effects could appear. The subjects'dependence to these orthoses could lead to aninjury, when they do not wear ankle tapingduring the sports activity.

Finally, the review analyses basic sportsmovements: gait, running, changes of directionand landings. Data of these actions are presented,from the literature and pilot studies performed inour laboratory, where ground reaction forces withand without prophylactic ankle taping have beenanalysed. Further investigations should focusmore in deep not only on the ankle tapingeffectiveness but on the decreases in theeffectiveness of sports movements, and the increasein the risk of injuries.

Key words: Biomechanics. Kinetics. Sport.Ankle. Injury prevention. Tape. Groundreaction forces.

B I B L I O G R A F I A

4. Jurgen H, Asmussen PD. Técnicas de vendaje. Santa fé deBogotá. Iatros, 1988.

5. Bové T. Los vendajes funcionales en el baloncesto. ArchMed Dep 1998;15(68): 523-30.

6. Camacho JL. Vendajes funcionales. (on line) http://webs.ono.com/usr000/ nutridepor/pagina_nueva_34.htm(Consulta: 21 de Abril de 2005).

Page 239: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

AVANCES DEL VENDAJE FUNCIONALDE TOBILLO EN EL DEPORTE

VOLUMEN XXIII - N.º 113 - 2006

227A M D

7. Paris DL, Sullivan SJ. Isometric strength of rearfootinversion and eversion in nonsupported, taped, and bracedankles assessed by a hand-held dynamometer. J Orthop SportPhys 1992;15(5):229-35.

8. Rovere GD, Clarke TJ, Yates S, Burley K. Retrospectivecomparison of taping and ankle stabilizers in preventingankle injuries. Am J Sports Med 1988;16(3):228-33.

9. Alves J W, Alday RV, Ketcham DL, Lentell GL. A comparisonof the passive support provided by various ankle braces.J Orthop Sport Phys 1992;15(1):10-8.

10. Bennell KL, Goldie PA. The differential effects of externalankle support on postural control. J Orthop Sport Phys 1994;20(6):287-95.

11. Burks RT, Bean BG, Marcus R, Barker HB. Analysis ofathletic performance with prophylactic ankle devices. AmJ Sports Med 1991;19(2): 104-6.

12. Carroll MJ, Rijke AM, Perrin DH. Effect of the Sweden-o ankle brace on talar tilt in subjects with unstable ankles.J Sport Rehabil 1993;2:261-7.

13. Cordova ML, Armstrong CW, Rankin JM, Yeasting RA.Ground reaction forces and EMG activity with ankle bracingduring inversion stress. Med Sci Sport Exer 1998;30(9):1363-70.

14. Cordova ML, Cardona CV, Ingersoll CD, Sandrey MA. Long-Term ankle brace use does not affect peroneus longusmuscle latency during sudden inversion in normal subjects.Journal of Athletic Training 2000;35(4):407-11.

15. Gehlsen GM, Pearson D, Bahamonde R. Ankle joint strength,total work, and ROM: comparison between prophylacticdevices. Athletic Training 1991,26:62-5.

16. Greene TA, Hillman SK. Comparison of support providedby a semirigid orthosis and adhesive ankle taping before,during, and after exercise. Am J Sports Med 1990;18(5):498-06.

17. Greene TA, Roland GC. A compartive isokinetic evaluationof a functional ankle orthosis on talocalcaneal function.J Orthop Sport Phys 1989;11(6):245-52.

18. Greene TA, Wight CR. A comparative support evaluationof three ankle orthoses before, during and after exercise.J Orthop Sport Phys 1990;11(10):453-66.

19. Gross MT, Bradshaw MK, Ventry LC, Weller KH. Comparisonof support provided by ankle taping and semirigid orthosis.J Orthop Sport Phys 1987;9(1):33-9.

20. Gross MT, Lapp AK, Davis M. Comparison of Swede-O-universal ankle support and aircast sport-stirrup orthoses

and ankle tape in restricting eversion-inversion before andafter exercise. J Orthop Sport Phys 1991;13(1):11-9.

21. Gross MT, Batten AM, Lamm AL, Lorren JL, Stevens JJ,Davis JM, Wilkerson GB. Comparison of donjoy ankleligament protector and subtalar sling ankle taping inrestricting foot and ankle motion before and after exercise.J Orthop Sport Phys 1994;19(1):33-41.

22. Gross MT, Everts JR, Roberson SE, Roskin DS, Young KD.Effect of donjoy ankle ligament protector and aircast sport-stirrup orthoses on functional performance. J Orthop SportPhys 1994;19(3):150-6.

23. Gross MT, Clemence LM, Cox BD, Mcmillan HP, MeadowsAF, Piland CS, Powers WS. Effect of ankle orthoses onfunctional performance for individuals with recurrentlateral ankle sprains. J Orthop Sport Phys 1997;25(4):245-52.

24. Hals TV, Sitler MR, Mattacola CG. Effect of a semi-rigidankle stabilizer on performance in persons with functionalankle instability. J Orthop Sport Phys 2000;30(9):552-6.

25. Hubbard T, Kaminski T. Kinesthesia is not affected byfunctional ankle instability status. Journal of AthleticTrainers 2002;37(4):481-6.

26. Kimura IF, Nawoczenski KA, Epler M, Owen MG. Effect ofthe airstirrup in controlling ankle inversion stress. J OrthopSport Phys 1987;9(5):190-3.

27. Lindley TR, Kernozek TW. Taping and semirigid bracingmay not affect ankle funnctional range of motion. Journalof Athletic Training 1995;30(2):109-12.

28. Locke A, Sitler M, Aland C, Kimura I. Long-Term use ofa softshell prophilactic ankle stabilizer on speed, agility,and vertical jump performance. J Sport Rehabil 1997;6:235-45.

29. Lofvenberg R, Karrholm J. The influence of an ankleorthosis on the talar and calcaneal motions in chroniclateral instability of the ankle. Am J Sports Med 1993;21(2):224-30.

30. Mackean LC, Bell G, Burnham RS. Prophylactic anklebracing Vs Taping: effects on functional performance infemale basketball players. J Orthop Sport Phys 1995;22(2):77-81.

31. Macpherson K, Sitler M, Kimura I, Horodyski M. Effectsof a semirigid and softshell prophylactic ankle stabilizeron selected performance tests among high school footballplayers. J Orthop Sport Phys 1995;21(3):147-52.

32. Martin N, Harter RA. (1993): Comparison of inversionrestraint provided by ankle prophylactic devices before and

Page 240: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

ABIÁN J.,et al.

ARCHIVOS DE MEDICINA DEL DEPORTE

228A M D

after exercise. Journal of Athletic Training 1993; 28 (4):324-9.

33. McCaw ST, Cerullo JF. Prophylactic ankle stabilizers affectankle joint kinematics during drop landings. Med Sci SportExer 1999;31(5):702-7.

34. Metcalfe RC, Schlabach GA, Looney MA, Renehan EJ. Acomparison of moleskin tape, linen tape, and lace-up braceon joint restriction and movement performance. Journalof Athletic Training 1997;32(2):136-40.

35. Paris DL. The effects of the Swede-o, new cross, andMcDavid ankle braces and adhesive ankle taping on speed,balance, agility and vertical jump. Journal of AthleticTraining 1992;27(3):253-5.

36. Paris DL, Sullivan SJ. Isometric strength of rearfootinversion and eversion in nonsupported, taped, and bracedankles assessed by a hand-held dynamometer. J Orthop SportPhys 1992;15(5):229-35.

37. Pienkowski D, Mcmorrow M, Shapiro R, Caborn DN, StaytonJ. The effect of ankle stabilizers on athletic performan-ce. Am J Sports Med 1995;23(6):757-62.

38. Riemann BL, Schmitz RJ, Gale MG, McCaw ST. Effect ofankle taping and bracing on vertical ground reaction forcesduring drop landings before and after treadmill jogging.J Orthop Sport Phys 2002;32:628-35.

39. Shapiro MS, Kabo M, Mitchell PW, Loren G, Tsenter M.(1994): Ankle sprain prohylaxis: an analysis of thestabilizing effects of braces and tape. Am J Sports Med1994;22(1):78-82.

40. Sitler M, Ryan J, Wheeler B, Mcbride J, Arciero R, AndersonJ, Horodyski M. The efficacy of a semirigid ankle stabilizerto reduce acute ankle injuries in basketball. Am J SportsMed 1994;22(4):454-61.

41. Verbrugge JD. The effects of semirigid air-stirrup bracingvs adhesive ankle taping on motor performance. J OrthopSport Phys 1996;23(5):320-5.

42. Wiley JP, Nigg BM. The effect of an ankle orthosis on anklerange of motion and performance. J Orthop Sport Phys 1996;23(6):362-9.

43. Yaggie JA, Kinzey SJ. A comparative analysis of selectedankle orthoses during functional tasks. J Sport Rehabil2001;10:174-83.

44. Alt W, Lohrer H, Gollhofer A. Functional properties ofadhesive ankle taping: Neuromuscular and mechanicaleffects before and after exercise. Foot Ankle Int 1999, 20(4):238-45.

45. Barceló O. Estudio biomecánico de la influencia del ven-daje funcional del tobillo sobre el rango de movimientoarticular y sobre el rendimiento deportivo, Tesis docto-ral. Universidad politécnica de Madrid. Madrid, 2004.

46. Pope M, Renstrom P, Donhermeyer D, Morgenstern S.Acomparison of ankle taping methods. Med Sci Sport Exer1987;19(2):143-7.

47. Bruns J, Scherlitz J, Luessenhop S. The stabilizing effectof orthotic devices on plantar flexion dorsal extension andhorizontal rotation of the ankle joint. Int J Sports Med 1996;17(8):614-8.

48. De Clercq LR. Ankle bracing in running: the effect of apush type medium ankle brace upon movements of the footand ankle during the stance phase. Int J Sports Med 1997;18:222-8.

49. Scheuffelen C, Rapp W, Golhofer A, Lohrer H. Orthoticdevices in functional treatment of ankle sprain. Int J SportsMed 1993;14: 140-9.

50. Wilkerson GB. Comparative biomechanical effects of thestandard method of andle taping and a taping methoddesigned to enhace subtalar stability. Am J Sports Med1991;19(6):588-95.

51. Hume PA, Gerrard DF. Effectiveness of external anklesupport. Sports med 1998;25(5):285-312.

52. Karlsson J, Sward L, Andreasson GO. The effect of tapingon ankle stability. Sports Med 1993;16(3):210-5.

53. Passerallo A.J, Calabrese GJ. Improving traditional ankletaping techniques with rigid strapping tape. Journal ofAthletic Training 1994;29(1):76-7.

54. Thacker S, Stroup D, Branche C, Gilchrist J, Goodman R,Weitman E. The prevention of ankle sprains in sports. AmJ Sports Med 1999;27(6):753-60.

55. Cordova ML, Ingersoll CD, Palmieri RM. Efficacy ofprophylactic ankle support: an experimental perspective.National Athletic Trainers 2002;37(4):446-57.

56. Wilkerson GB. Biomechanical and neuromuscular effectsof ankle taping and bracing. National Athletic Trainers2002;37(4):436-45.

57. Bot S, Mechelen WV. The effect of ankle bracing on athleticperformance. Sports med 1999; 27 (3): 171-8.

58. Villarroya A, Nerón S, Marín M, Moros T, Marco C. "Cargasexcesivas y mecanismos de lesión deportiva. Arch Med Dep1999;16(70): 173-9.

59. Abián J, Alegre LM, Fernández JM, Lara AJ, Aguado X.Variabilidad en la capacidad de amortiguación de caí-

Page 241: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

AVANCES DEL VENDAJE FUNCIONALDE TOBILLO EN EL DEPORTE

VOLUMEN XXIII - N.º 113 - 2006

229A M D

da después de ejercicios intensos. Actas de las I Jorna-das Internacionales de Medicina del Deporte. JornadaNacional del Grupo de Especialistas de Medicina de laEducación Física y el Deporte. Arch Med Dep2004;21(5):418-9.

60. Abián J, Alegre LM, Fernández JM, Lara AJ, Aguado X.Fuerzas de reacción en pies cavos y planos en movimien-

tos cíclicos y esfuerzos máximos. Actas de las I JornadasInternacionales de Medicina del Deporte. Jornada Nacio-nal del Grupo de Especialistas de Medicina de la EducaciónFísica y el Deporte. Arch Med Dep 2004;21(5):417-8.

6 1. Meana M, López JL, Grande I, Aguado X. Biomecánica delvendaje funcional preventivo de tobillo. Arch Med Dep2004;21(2): 99-108

Page 242: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL
Page 243: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

DIFERENCIAS DE SEXO DURANTE LA AMORTIGUACIÓNDE CAÍDAS EN TESTS DE SALTO

VOLUMEN XXIII - N.º 116 - 2006

441A M D

ORIGINALVolumen XXIIINúmero 116

2006Págs. 441-449

CORRESPONDENCIA:Javier Abián VicénLaboratorio de Biomecánica. Facultad de Ciencias del Deporte. Universidad de Castilla-La Mancha.Avenida Carlos III s/n. 45071 Toledo

Aceptado: 04-05-2006 / Original nº 519

DIFERENCIAS DE SEXO DURANTE LA AMORTIGUACIÓN DE CAÍDASEN TESTS DE SALTO

JavierAbián

Luis M.Alegre

Amador J.Lara

XavierAguado

Facultad deCiencias delDeporteUniversidadde Castilla-La ManchaToledo

GENDER DIFFERENCES DURING LANDINGS AFTER JUMPING

Objetivo: Analizar, en una población de aspirantes al ingresoen una Facultad de Ciencias del Deporte, la cinética de labatida, vuelo y amortiguación de sus saltos y estudiar lasdiferencias entre los subgrupos de hombres y mujeres.Metodología: Se analizaron los saltos de 180 sujetos, 132eran hombres (edad = 19,8±3,0 años) y 48 mujeres (edad =19,6±3,3 años). Se utilizó una plataforma de fuerzas QuattroJump de Kistler. Se analizaron las fuerzas de reacciónverticales y la posición del centro de gravedad en un salto concontramovimiento.Resultados: Los hombres lograron mayores alturas delcentro de gravedad en el vuelo (hombres = 35,77±4,55 cm,mujeres = 26,08±3,33 cm; p < 0,001) y mayores segundospicos de fuerza en la amortiguación (F2) (hombres =7,41±2,20 BW, mujeres = 5,72±1,82 BW; p < 0,001) (BW= veces el peso corporal). Las mujeres mostraron un mayorrecorrido del centro de gravedad durante la amortiguación(hombres = 10,21±2,26%, mujeres = 10,84±2,21%; p <0,05). Los valores obtenidos en F2 en el conjunto de lapoblación estudiada han sido superiores a los registrados porotros autores en alturas de caídas mayores, en las que elobjetivo era lograr la máxima amortiguación.Conclusiones: Los resultados de este estudio justifican lanecesidad de intervenciones profilácticas para enseñar aamortiguar correctamente las caídas de saltos. El mayor valorobtenido en F2 por los hombres podría ser debido a quecaían desde mayor altura que las mujeres y al mayorrecorrido del centro de gravedad registrado por las mujeresque les protegía de valores altos en F2.

Palabras clave: Biomecánica. Cinética. Fuerzas de reacción.Salto con contramovimiento. Amortiguación de caídas.Prevención de lesiones. Diferencias de sexo.

Purpose: To analyse, in a population of applicants to aFaculty of Sports Sciences, the kinetics of the push off, flightand landing phases in a jump test, and to study thedifferences between men and women.Methodology: The jumps of 180 applicants to a faculty ofSports Sciences (132 men, mean age: 19.8±3.0 years, and48 women, mean age: 19.6±3.3 years) were recorded with aQuattro Jump Kistler force plate. Vertical ground reactionforces and the position of the centre of gravity in a countermovement jump were analysed.Results: The men's group reached higher heights of thecentre of gravity during the flight phase (men = 35.77±4.55cm, women = 26.08±3.33 cm; p < 0.001) and greatervertical forces in the second peak of the landing phase (F2)(men = 7.41±2.20 BW, women = 5.72±1.82 BW; p <0,001) (BW = body weight). Women showed greater verticaldisplacement of the centre of gravity during the landingphase (men = 10.21±2.26% of subject's height, women =10.84±2.21%; p < 0.05). The values of F2 in thepopulation studied have been greater than those found inother studies performed with higher landing heights, but withthe aim of maximal softening.Conclusions: The results of the present study support thenecessity of prophylactic interventions to teach properlanding techniques among specific populations. The greatervalues of F2 in the men’s group could have be caused by thehigher landing heights and the shorter vertical displacementof the centre of gravity during the landing phase, comparedto the women's group.

Key words: Biomechanics. Kinetics. Ground reaction forces.Counter movement jump. Landings. Injury prevention.Gender differences.

R E S U M E N S U M M A R Y

Page 244: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

ABIÁN J.,et al.

ARCHIVOS DE MEDICINA DEL DEPORTE

442A M D

INTRODUCCIÓN

Los tests de salto son usados en diferentes situa-ciones para medir la fuerza explosiva de lasextremidades inferiores. Entre ellas, en pruebasde aptitud física selectivas en determinadospuestos de trabajo (policía, bomberos,…), enpruebas de ingreso a la mayoría de Facultadesde Ciencias del Deporte en España y en testsque realizan profesores de Educación Física yentrenadores.

El sujeto y el entrenador, profesor de EducaciónFísica o investigador, centran su atención en labatida y la altura alcanzada en el vuelo, descui-dando casi siempre la observación de una co-rrecta amortiguación en la caída. En situacio-nes reales de competición, algunos autores si-túan el aterrizaje de saltos como la principalcausa de lesión en determinados deportes1-8. Porejemplo Gray, et al.9 destacan que entre el 58% yel 63% de las lesiones en baloncesto y voleibolse producen durante los aterrizajes de saltos.

Si medimos las fuerzas de reacción verticalesdel suelo en la caída de un salto encontramosun patrón cinético consistente en tres picos defuerza característicos (Figuras 1 y 2)10-12. El pri-mero (F1) se ajusta temporalmente al impactode las cabezas de los metatarsos y sucede entorno a los 10 ms de haber iniciado el contactodel pie con el suelo. El segundo (F2) se ajustatemporalmente al impacto del talón y sucede entorno a los 40 ms. Este pico es el mayor de los 3y puede llegar a superar 10 BW (veces el pesocorporal). El tercero, que guarda relación con elángulo máximo de flexión de los tobillos einicio del levantamiento de los talones del sueloy sucede alrededor de los 150 ms, es el menor delos 3.

En la bibliografía se apoya la idea de que laforma en que el sujeto absorbe la energía duran-te la amortiguación de un salto va a condicio-nar que ésta sea más o menos peligrosa13-20. Estehecho es importante, porque resalta la capaci-dad que tiene el ser humano de protegerse acti-vamente (mediante una técnica adecuada) delriesgo implícito de lesión en las caídas. Así,algunos autores incluso llegan a realizar inter-venciones en el marco escolar para evaluar has-ta qué punto se puede disminuir el riesgo delesión después de un aprendizaje técnico21-23.

Por otro lado, abundantes trabajos de esta últi-ma década han estudiado el riesgo de lesiónsegún el sexo en la amortiguación de caídas.Así, diferentes autores describen un mayor ries-go de lesión de ligamento cruzado anterior en lasmujeres (Tabla 1). Estos estudios se han centra-do en medir cinemática, cinética y activación

0

2

4

6

8

Fu

erza

vert

ical

(BW

)

0 35 70 105 140 175 210 245

F1

F2

F3

Fuerzas de reacción en la amortiguación de la caída

Tiempo (ms)

FIGURA 2.Gráfica representativa

de los 3 picosde fuerza de reacción

vertical en laamortiguaciónde una caída.

La gráfica se haobtenido con una

plataformade fuerzas

piezoeléctrica Kistler9281 C, a 1000 Hz.(F1 = primer pico de

fuerza; F2 =segundo pico de

fuerza; F3 = tercerpico de fuerza)

Figura modificada deAbián et al10 .

FIGURA 1.Instantes en los que se

producen los picosrepresentativos de las

fuerzas de reacciónvertical en la amorti-

guación de unacaída.

Las fotografías se hanobtenido con una

cámara de vídeo dealta velocidad

MotionScope M1,a 1000 Hz.

(F1 = primer pico defuerza; F2 =

segundo pico defuerza; F3 = tercer

pico de fuerza; BW =veces el peso

corporal; t = tiempotranscurrido desde el

inicio del contacto)

Page 245: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

DIFERENCIAS DE SEXO DURANTE LA AMORTIGUACIÓNDE CAÍDAS EN TESTS DE SALTO

VOLUMEN XXIII - N.º 116 - 2006

443A M D

muscular. Hewett, et al.35, atribuyen el mayorriesgo de las mujeres a la mayor extensión delas rodillas al inicio de la amortiguación, loque podría verse reflejado en una posición máselevada del centro de gravedad en ese instante.

El objetivo de este estudio ha sido analizar lasfuerzas de reacción verticales y la posición delcentro de gravedad durante la amortiguaciónde tests de salto, realizados en las pruebas deacceso a una Facultad de Ciencias del Deporte,para determinar si guardan relación con lapotencia de la batida y altura del salto y, porotro lado, ver si se diferencian los subgruposde hombres y mujeres de la población estudia-da.

METODOLOGÍA

Instrumentos

Para medir las variables de los saltos se usó unaplataforma de fuerzas piezoeléctrica portableQuattro Jump (Kistler, Suiza), conectada a unordenador en el que se recogían los registros defuerzas, con una frecuencia de muestreo de 500Hz.

Sujetos

Tomaron parte en el estudio 180 aspirantes aingresar en una Facultad de Ciencias del Depor-te de España, en el curso 2005-2006; 132 de

TABLA 1.Estudios queanalizan lasdiferencias de sexoen lasamortiguacionesde caídas

Autor Número Edad Características Altura de Tipo de Diferencias Mayorde sujetos (años) caída medición riesgo

Hewett, et al24 11 M y 9H M=15.0±0.6 Jugadores de Previo salto Cinética *** HombresH= 15.0±0.3 voleibol máximo

Cowling 11 M y 7 H 22.6±2.5 Físicamente Previo salto Cinemática nsy Steele25 activos máximo Cinética ns Mujeres

Electromiografía *

Chappell, et al26 10 M y 16 H M=21.0±1.7 Atletas recreacionales Previo Cinética *** MujeresH=23.4±1.1 practicaban A.F. salto Cinemática ***

3 días a la semana máximo

Fagenbaum y 8 M y 10 H ---- Jugadores de baloncesto 25.4 y Electromiografía ns HombresDarling27 universitarios 50.8 cm Cinemática *

Ford, et al28 47 M y 34 H M= 16.0±0.2 Jugadores Drop Jump Cinemática *** MujeresH= 16.0±0.2 de baloncesto (31 cm) Cinética ns

Chappell, et al29 10 M y 10 H M= 21.7±2.1 Atletas recreacionales Previo salto Cinemática ** MujeresH= 23.7±0.8 practicaban A.F. máximo

3 días a la semana

Kernozek, et al3015 M y 15 H M= 23.6±1.76 Atletas recreacionales 60 cm Cinemática * MujeresH= 24.5±2.26 universitarios Cinética *

Swartz, et al31 4 grupos G= 9.2±1.0 Previo salto al15G, 15B, B= 9.41±0.9 Físicamente 50% de la altura Cinética ns No

14M y 14H M= 24.2±2.2 activos alcanzada en un diferenciasH= 23.5±3.2 salto máximo

Yu, et al32 30 M y 30 H 11 a 16 Practicaban fútbol Previo salto Cinemática *** Mujeres 2 o 3 veces por semana máximo

Zazulak, et al8 13 M y 9 H – Jugadores de fútbol 30.5 y Electromiogarfía * Mujeresde 1ª división y atletas 45.8 cm

universitarios

H= hombres; M= mujeres; G= niñas; B= niños; A.F.= actividad física; * = p< 0.05; ** = p< 0.01; *** = p< 0.001; ns= no significativas

Page 246: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

ABIÁN J.,et al.

ARCHIVOS DE MEDICINA DEL DEPORTE

444A M D

ellos eran hombres (edad = 19,8±3,0 años,masa = 70,4±8,3 kg, estatura = 176,3±5,5 cm)y 48 mujeres (edad = 19,6±3,3 años, masa =55,9±6,7 kg, estatura = 163,6±6,3 cm). Todoslos sujetos fueron informados de la realizacióndel estudio, pudiéndose negar a participar en elmismo.

Protocolos

A todos los sujetos se les dejó un tiempo míni-mo de 10 minutos para que realizaran el calen-tamiento. Los sujetos fueron tallados y pesa-dos, y a continuación realizaron el test de saltocon contramovimiento (CMJ), sobre la plata-forma de fuerzas. Las manos debían permane-cer en la cintura durante todo el salto (batida,vuelo y amortiguación). Se dejó libre el ángulode flexión de rodillas en el contramovimiento.Cada sujeto disponía de dos intentos para su-perar unos mínimos de altura establecidos (29cm en hombres y 21 cm en mujeres). Si noconseguían el mínimo en el primer intento reali-zaban, tras un minuto, un segundo salto. Seanalizó el mejor de los intentos.

Variables

Se estudió, respecto al vuelo la altura a la que seelevaba el centro de gravedad (H), respecto a labatida el pico de potencia (PP) y respecto a laamortiguación de la caída los tres picos de fuer-za vertical (F1, F2 y F3), el instante en el quesucedía cada uno de estos picos (T1, T2 y T3) yel tiempo desde el inicio de contacto con elsuelo (considerado a partir de que el valor delas fuerzas de reacción verticales superaba los 3

N) hasta que se cruzaba por primera vez el valordel peso en la gráfica de fuerza-tiempo (TBW).Durante la amortiguación también se estudió, enel instante de tocar el suelo, cuánto más bajo seencontraba el centro de gravedad respecto delinstante del despegue (Hl) y el descenso delcentro de gravedad desde el inicio de la amorti-guación hasta el punto más bajo (Lr). Losvalores de Hl y Lr se utilizaron normalizadoscon la estatura del sujeto.

Análisis estadístico

Se usó el software estadístico Statistica forWindows v. 5.1. Para comprobar la normalidadde las distribuciones se usó la W de ShapiroWilks, la Curtosis y las Skewness. Se realizóestadística descriptiva obteniendo medias, des-viaciones típicas y correlaciones de Pearson (enlas variables que mostraban una curva normal)y de Spearman (en las variables que mostrabanuna curva no normal). Como pruebas inferen-ciales se utilizaron en las variables que presen-taban una distribución normal la T de Studentpara variables independientes y en las que mos-traban una distribución no normal el test de laU de Mann-Whitney. En las correlaciones y prue-bas inferenciales se usó el criterio de significa-ción mínimo de p < 0.05.

RESULTADOS

Se encontró una distribución normal tanto en elsubgrupo de hombres como en el de mujeres enel PP, T2, F3 y Hl. Además, los hombres presen-taron una distribución normal en F2 y las muje-

TABLA 2.Resultados obtenidosen las variables de la

batida, vuelo yposición del centro

de gravedaddurante la

amortiguación

PP (W/kg) H salto (cm) HI (%) Lr (%)

Todos 47.95±7.12 33.16±6.06 2.43±2.00 10.38±2.26

Hombres 50.77±5.57 35.77±4.55 2.38±1.78 10.21±2.26

Mujeres 40.20±4.78 26.08±.33 2.57±2.53 10.84±2.21

Diferencia (H-M) 10.58 9.68 0.16 -0.63

% Diferencia 20.83 27.07 3.81 5.78

Sig (H-M) *** *** ns *

PP= pico de potencia alcanzado durante la batida; H salto= altura alcanzada por el centro de gravedad en el vuelo; Hl= altura del centro degravedad en el inicio de la amortiguación; Lr = desplazamiento del centro de gravedad desde el inicio de la amortiguación hasta el punto más bajo

Page 247: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

DIFERENCIAS DE SEXO DURANTE LA AMORTIGUACIÓNDE CAÍDAS EN TESTS DE SALTO

VOLUMEN XXIII - N.º 116 - 2006

445A M D

res en el TBW. El resto de variables mostraronuna distribución no normal.

Las variables de la batida, vuelo y posición delcentro de gravedad durante la amortiguación semuestran en la Tabla 2. Las mayores diferenciasse han encontrado en la altura del salto y elpico de potencia; en ambas variables los hom-bres obtuvieron mayores valores. Sin embargo,en las variables relacionadas con la posicióndel centro de gravedad, las mujeres obtuvieronmayores desplazamientos, con una altura míni-ma y un rango mayores.

En la Tabla 3 se muestran los resultados obteni-dos en las variables cinéticas de la amortigua-ción. Las mayores diferencias entre hombres ymujeres se han encontrado en el primer y segun-do pico de fuerza; en ambos los hombres teníanmayores valores que las mujeres.

En la Tabla 4 se muestran las principales corre-laciones encontradas, tanto en el subgrupo dehombres como en el de mujeres y en el conjuntode la población estudiada.

DISCUSIÓN

Durante las amortiguaciones, los picos de fuer-za vertical de reacción han sido utilizados pordiversos autores como una forma de evaluarriesgo de lesión en deportes en los que se danimpactos contra el suelo. En el caso de lasamortiguaciones de saltos, F2, que puede supe-rar 10 BW, sucede en torno a los 40 ms. Pflum,et al33 sitúa F2 en el mismo instante en el que el

ligamento cruzado anterior tiene que soportaruna mayor tensión. Así, es coherente pensarque disminuyendo F2 pudiéramos disminuir latransmisión de la carga a través de la cadenacinética justo en el instante en que el ligamentocruzado anterior está siendo solicitado al máxi-mo y, de esta manera, podríamos estar prote-giéndolo.

Los valores encontrados en F2 han sido supe-riores a los obtenidos por otros autores queanalizaban caídas desde alturas similares a lasalcanzadas en el vuelo por la población estu-diada (H salto = 33,16±6,06 cm). Mcnitt-Gray13,14, analizando la amortiguación de caí-das desde 32 cm de hombres con característicassimilares a los de nuestra población, obtuvie-ron de media 4.2 BW en F2. Self y Paine34,estudiando las caídas desde 30 cm en atletasrecreacionales, obtuvieron 4.29 BW de media.Prapavessis, et al.21, estudiando caídas desde 30

T1 (s) F1(BW) T2 (s) F2(BW) T3 (s) F3 (BW) TBW (s)

Todos 0.017±0.007 2.93±1.18 0.057±0.019 6.96±2.23 0.123±0.030 2.88±0.61 0.226±0.58

Hombres 0.017±0.06 3.17±1.21 0.055±0.018 7.41±2.20 0.119±0.028 2.96±0.62 0.220±0.056

Mujeres 0.018±0.007 2.33±0.85 0.065±0.020 5.72±1.82 0.134±0.034 2.62±0.49 0.240±0.064

Diferencia (H-M) -0.001 0.84 -0.010 1.69 -0.015 0.34 -0.02

% Diferencia 4.49 26.48 15.53 22.82 11.13 11.59 8.48

Sig (H-M) ns *** ** *** * ** nsF1 = primer pico de fuerza; T1= instante en el que sucedía el primer pico de fuerza; F2= segundo pico de fuerza; T2= instante en el que sucedíael segundo pico de fuerza; F3= tercer pico de fuerza; T3= instante en el que sucedía el tercer pico de fuerza; TBW= tiempo desde el inicio decontacto con el suelo hasta que se cruzaba por primera vez el valor el peso en la gráfica de fuerza-tiempo; *= p < 0.05; **= p < 0.01; ***= p<0.001; ns= no significativa

TABLA 3.Resultados obtenidosen las variablescinéticas durante laamortiguación de lacaída del salto

VVVVVariables Todos Hombres Mujeres

F2-T2 -0.61 -0.55 -0.69

F3-T3 -0.76 -0.79 -0.70

F2-TBW -0.52 -0.42 -0.71

Lr-F2 -0.59 -0.54 -0.69

HI-F2 -0.14 (ns) -0.12 (ns) -0.56

Lr-TBW 0.85 0.85 0.89

F2= segundo pico de fuerza; T2= instante en el que sucedía elsegundo pico de fuerza; F3= tercer pico de fuerza; T3= instante en elque sucedía el tercer pico de fuerza; TBW= tiempo desde el inicio decontacto con el suelo hasta que se cruzaba por primera vez el valor elpeso en al gráfica de fuerza-tiempo; Hl= altura del centro degravedad en el inicio de la amortiguación; Lr= desplazamiento delcentro de gravedad desde el inicio de la amortiguación hasta el puntomás bajo

TABLA 4.Principalescorrelaciones que sehan encontrado enel estudio. Todaspresentaban unasignificación dep<0.001 excepto lasmarcadas con (ns)que no fueronsignificativas

Page 248: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

ABIÁN J.,et al.

ARCHIVOS DE MEDICINA DEL DEPORTE

446A M D

cm en 35 mujeres y 56 hombres, obtuvieron 4.53BW de promedio en F2. La explicación podríaser que los sujetos de nuestro estudio centraronsu atención en alcanzar la máxima altura en elsalto, descuidando la correcta amortiguación.Así, se obtuvo un valor medio de toda la pobla-ción en F2 de 6.96 BW; valor incluso superior alencontrado por McNitt-Gray13,14 en caídas cen-trando la atención en amortiguar todo lo posi-ble desde una altura de 0.72 m (F2 = 6.4 BW).

Chappell, et al.26 y Kernozek, et al.30 estudiandola cinética durante la amortiguación de caídasen hombres y mujeres, concluían que el grupode mujeres tenía un mayor riesgo de lesión queel de hombres. Sin embargo Hewett, et al.24

referían un mayor riesgo en los hombres, alencontrar en ellos mayores valores de F2. Nues-tros resultados coinciden con este autor (F2hombres = 7.41±2.20 BW; F2 mujeres =

5.72±1.82 BW, p < 0.001). En este sentido cabedestacar que los hombres de nuestro estudiocaían en sus saltos desde alturas superiores alas mujeres (H salto hombres = 35.77±4.55cm;H salto mujeres = 26.08±3.33cm, p < 0.001)(Figura 3). Si a un grupo de hombres y a otro demujeres se les dejara caer desde una mismaaltura más elevada, es posible que los mayoresvalores de F2 los encontráramos en las mujeres,como describen algunos autores8,30.

El subgrupo de hombres también ha obtenidomayores valores en F1 (p < 0.001) y F3 (p <0.01), pero el valor de estos picos ha sido de 2 a3 veces menor que F2. Por esto no creemos quepuedan representar un incremento especial enel riesgo de lesiones concretas.

Hewett, et al.35, consideran que una mayor extensiónde los miembros inferiores al inicio de la amortigua-ción incrementaría la tensión que tiene que soportarel ligamento cruzado anterior y con ello el riesgo delesión. En este estudio hemos medido indirectamen-te esta extensión a partir de la altura del centro degravedad al inicio de la amortiguación. No obstante,aunque el subgrupo de mujeres caía con un mayorgrado de extensión no hemos obtenido diferenciassignificativas entre hombres y mujeres (Hl hombres= 2.38±1.78%; Hl mujeres= 2.57±2.52%).

Al igual que en otros estudios10, hemos encon-trado correlaciones negativas entre F2 y T2,

504540353025201510

50

cm

12

10

8

6

4

2

0

BW

H salto F2

*** ***

HombresMujeres

FIGURA 3.Diferencias en altura

de salto (H salto)y segundo pico

de fuerza (F2)entre el subgrupo

de hombres y elde mujeres.

(*** = p < 0.001)

Correlación entre F2 y T2F2 = 11.11 - 72.34 * T2

r = -0.61

Correlación entre F2 y LrF2 = 13.72 - 0.65 * Lr

r = -0.59

16

14

12

10

8

6

4

2

T2 (s) Lr (cm)

F2

(BW

)

F2

(BW

)

16

14

12

10

8

6

4

20.00 0.02 0.04 0.06 0.08 0.10 0.12 2 4 6 8 10 12 14 16 18

HombresMujeres

FIGURA 4.Correlaciones entreF2 y T2 (izquierda)y F2 y Lr (derecha)

(F2 = segundo picode fuerza;

T2 = instanteen el que sucedía

el segundo picode fuerza;

Lr = desplazamientodel centro

de gravedad desdeel inicio

de la amortiguaciónhasta el punto

más bajo)

Page 249: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

DIFERENCIAS DE SEXO DURANTE LA AMORTIGUACIÓNDE CAÍDAS EN TESTS DE SALTO

VOLUMEN XXIII - N.º 116 - 2006

447A M D

B I B L I O G R A F Í A

1. Henry JH, Lareau B, Neigut D. The injury rate in professionalbasketball. Am J Sports Med 1982;10(1):168.

2. Zelisko JA, Noble HB, Porter MA. Comparison of men’s andwomen’s professional basketball injuries. Am J Sports Med1982;10(5):297-9.

3. Martínez JL. Patología lesional del baloncesto. Archivosde Medicina del Deporte 1985;8:341-8.

4. Richie DH, Celso SF, Bellucci PA. Aerobic dance injuries:a retrospective study of instructors and participants.Physician and Sports Medicine 1985;13(2):130-40.

tanto en el conjunto de la población (r= -0.61;p<0.001) como en los subgrupos de hombres (r= -0.55; p<0.001) y mujeres (r = -0.69;p<0.001). Esto nos indica que retrasar el ins-tante en el que se da F2 reduce su valor. Otraposible forma de reducir este valor sería alar-gando el tiempo de amortiguación, al utilizarun mayor recorrido del centro de gravedad.Coincidiendo con esta idea se han encontradocorrelaciones negativas entre F2 y Lr, tanto en elconjunto de la población estudiada (r = -0.56;p<0.001), como en los subgrupos de hombres(r = -0.52; p<0.001) y de mujeres (r = -0.69;p<0.001) (Figura 4). Por otro lado el subgrupode mujeres (Lr = 10.84±2.21 %) descendió másque el de hombres (Lr =10.21±2.26 %; p<0.05). Este hecho probablemente haya contri-buido también a que las mujeres de este estudiohayan tenido menores valores en F2.

Por otro lado no se han encontrado correlacio-nes entre la altura del salto y F2 ni entre PP (quees una forma de medir la fuerza explosiva) y F2.Esto indica que independientemente de la altu-ra de la que se caiga o de la fuerza explosiva quese tenga, con una buena técnica se puedenconseguir valores bajos en F2. Esto refuerza laimportancia que tiene el enseñar a caer bien yjustifica intervenciones profilácticas en diferen-tes ámbitos, como la escuela o los centros demedicina deportiva.

Estudiar la cinética de los saltos con platafor-mas de fuerzas puede ayudarnos a entender loque sucede durante la amortiguación de unacaída y nos da pistas para aprender a realizaramortiguaciones menos agresivas, pero paratener una visión más amplia en futuros trabajossería interesante incluir análisis de la cinemáti-ca y electromiografía, sincronizadas con el re-gistro de fuerzas de reacción.

CONCLUSIONES

Para amortiguar los picos de fuerza en las caí-das de saltos es más importante una buenatécnica que una mayor potencia en las extremi-dades inferiores.

No prestar atención a la amortiguación podríaincrementar los picos de fuerza vertical. Esto esimportante ya que diferentes autores han mos-trado el riesgo de lesión que suponen las fuer-zas de reacción elevadas en la amortiguación decaídas de saltos.

Así, se justificarían intervenciones profilácticasen diferentes ámbitos en las que, enseñandouna técnica correcta, buscaríamos proteger apersonas que en el deporte, en juegos o ensituaciones de test, se vieran expuestas al riesgode lesiones durante la amortiguación.

Page 250: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

ABIÁN J.,et al.

ARCHIVOS DE MEDICINA DEL DEPORTE

448A M D

5. Gerberich SG, Luhmann S, Finke C, Priest JD, Beard BJ.Analysis of severe injuries associated with volleyballactivities. Physician and Sports Medicine 1987;15(8):75-9.

6. Özgüven H, Berme N. An experimental and analytical studyof impact forces during human jumping. J Biomech 1988;21(12):1061-6.

7. Manonelles P, Tárrega L. Epidemiología de las lesionesen el baloncesto. Archivos de Medicina del Deporte 1998;68:479-83.

8. Zazulak BT, Ponce PL, Straub SJ, Michael JM, AvedisianL, Hewett TE. Gender comparison of hip muscle activityduring single-leg landing. J Orthop Sports Phys Ther 2005;35:292-9.

9. Gray J, Taunton JE, Mckenzie DC, Clement DB, McConkeyJP. A survey of injuries to the anterior cruciate ligamentof the knee in female basketaball players international.Int J Sports Med 1985;6:314-6.

10. Abián J, Alegre LM, Lara AJ, Sordo S, Aguado X. Capaci-dad de amortiguación en aterrizajes después de ejerciciointenso. Revista de Entrenamiento Deportivo 2005;19(3):5-11.

11. Abián J, Alegre LM, Lara AJ, Jiménez L, Aguado X. Fuer-zas de reacción del suelo en pies cavos y planos. Archivosde Medicina del Deporte 2005;108:285-92.

12. Bauer JJ, Fuchs RK, Smith GA, Snow CM. Quantifying forcemagnitude and loading rate from drop landings that in-duce osteogenesis. J Appl Biomech 2001;17(2):142-52.

13. McNitt-Gray JL. Kinematics and impulse characteristicsof drop landings from three heights. Int J Sport Biomech1991;7:201-24.

14. McNitt-Gray JL. Kinetics of the lower extremities duringdrop landings from three heights. J Biomech 1993;26(9):1037-46.

15. McNair PJ, Prapavessis H, Callender K. Decreasing landingforces: effect of instruction. Br J Sports Med 2000;34:293-6.

16. Onate JA, Guskiewicz EM, Sullivan RJ. Augmented feedbackreduces jump landing forces. J Orthop Sports Phys Ther2001;31(9):511-7.

17. James CR, Bates BT, Dufek JS. Classification and comparisonof biomechanical response strategies for accommodatinglanding impact. J Appl Biomech 2003;19:106-18.

18. Devan MR, Pescatello S, Faghri P, Anderson J. A prospectivestudy of overuse knee injuries among female athletes withmuscle imbalances and structural abnormalities. J AthlTraining 2004;39(3):263-7.

19. Cowling EJ, Steele JR, McNair PJ. Effect of verbalinstructions on muscle activity and risk of injury to theanterior cruciate ligament during landing. Br J Sports Med2003;37:126-30.

20. Tillman MD, Hass CJ, Brunt D, Bennett GR. Jumping andlanding techniques in elite women’s volleyball. J Sports SciMed 2004;3:30-6.

21. Prapavessis H, Mcnair PJ, Anderson K, Hohepa M.Decreasing landing forces in children: the effect ofinstructions. J Orthop Sports Phys Ther 2003;33(4):204-7.

22. Pittenger VM, McCaw ST, Thomas DQ. Vertical groundreaction forces of children during one and two leg ropejumping. Research Quaterly for Exercise and Sport 2002;73(4):445-9.

23. Mckay H, Tsang G, Heinonen A, MacKelvie K, SandersonD, Khan KM. Ground reaction forces associated with aneffective elementary school based jumping intervention.Br J Sports Med 2005;39:10-4.

24. Hewett TE, Stroupe AL, Nance TA, Noyes FR. Plyometrictraining in female athletes. Decreased impact forces andincreased hamstring torques. Am J Sports Med 1996;24(6):765-73.

25. Cowling EJ, Steele JR. Is lower limb muscle synchronyduring landing affected by gender? Implications forvariations in ACL injury rates. J Electromyogr Kines2001;11: 263-8.

26. Chappell JD, Yu B, Kirkendall DT, Garrett WE. A comparisonof knee kinetics between male and female recreationalathletes in stop-jump tasks. Am J Sports Med 2002;30(2):261-7.

27. Fagenbaum R, Darling WG. Jump landing strategies in maleand female college athletes and the implications of suchstrategies for anterior cruciate ligament injury. Am J SportsMed 2003;31(2):233-40.

28. Ford KR, Myer GD, Hewett TE. Valgus knee motion duringlanding in high school female and male basketball players.Med Sci Sports Exerc 2003;35(10):1745-50.

29. Chappell JD, Herman DC, Knight BS, Kirkendall DT, GarrettWE, Yu B. Effect of fatigue on knee kinetics and kinematicsin stop-jump tasks. Am J Sports Med 2005;33:1022-9.

30. Kernozek TW, Torry MR, Heather VH, Cowley H, Tanner S.Gender differences in frontal and sagittal planebiomechanics during drop landings. Med Sci Sports Exerc2005;37:1003-12.

31. Swartz, EE, Decoster LC, Russell PJ, Croce RV. Effects ofdevelopmental satage and sex on lower estremity

Page 251: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

DIFERENCIAS DE SEXO DURANTE LA AMORTIGUACIÓNDE CAÍDAS EN TESTS DE SALTO

VOLUMEN XXIII - N.º 116 - 2006

449A M D

kinematics and vertical ground reaction forces duringlanding. J Athl Training 2005;40(1):9-14.

32. Yu B, McClure SB, Onate JA, Guskiewicz KM, KirkendallDT, Garrett WE. Age and gender effects on lower extremitykinematics of youth soccer players in a stop-jump task. AmJ Sports Med 2005;33(9):1356-64.

33. Pflum MA, Shelburne KB, Torry MR, Decker MJ, PandyMG. Model prediction of anterior cruciate ligament force

during drop-landings. Med Sci Sports Exerc 2004;36:1949-58.

34. Self BP, Paine D. Ankle biomechanics during four landingtechniques. Med Sci Sports Exerc 2001;33(8):1338-44.

35. Hewett TE, Myer GD, Ford KR, Heidt RS, Colosimo AJ,Mclean SG, et al. Biomechanical measures of neuromuscularcontrol and valgus loading of the knee predict anteriorcruciate ligament injury risk in female athletes. Am J SportsMed 2005;33(4):492-501.

Page 252: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL
Page 253: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

VOLUMEN XXIV - N.º 122 - 2007ABIÁN J,et al.

ARCHIVOS DE MEDICINA DEL DEPORTE

442A M D

EL VENDAJE FUNCIONAL ELÁSTICO VS INELÁSTICO EN SALTOS Y AMORTIGUACIONESELASTIC VS INELASTIC TAPE IN JUMPS AND LANDINGS

JavierAbián1

Luis M.Alegre1

JoseManuel

Fernández2

XavierAguado1

1Facultad de Ciencias del

Deportede Toledo

UCLM2Escuela

Universitaria de Enfermería y Fisioterapia

de ToledoUCLM

CORRESPONDENCIA:Javier Abián VicénLaboratorio de Biomecánica, Facultad de Ciencias del Deporte, Campus Tecnológico de la Fábrica de Armas,Universidad de Castilla la Mancha. Avenida Carlos III S/N. 45071 Toledo

Aceptado: 19.07.2007 / Original nº 532

R E S U M E N S U M M A R Y

ORIGINAL

El propósito de este estudio ha sido analizar la influencia de dos vendajes funcionales preventivos de tobillo en dife-rentes tests de salto y amortiguación mediante el estudio de las fuerzas verticales de reacción del suelo. Participaron 27 mujeres jóvenes, sanas y activas (edad=20.6±4.1 años). Se realizaron dos tipos de vendaje funcional preventivo de tobillo, uno con vendas inelásticas (VI) y otro con vendas elásticas (VE), que limitaban la supinación y la extensión. Se analizó su influencia en cuatro tests; (1) buscando la máxima amortiguación desde 0.75 m, (2) lo mismo desde 0.30 m, (3) buscando máxima altura de salto sin ayuda de brazos desde parado (CMJ) y (4) lo mismo con ayuda de brazos y 3 pasos de aproximación. Ambos vendajes restringieron, sin diferencias significativas entre ellos, la supinación (restricción respecto a la situación sin vendaje: VI=40.74% y VE=41.77%) y la extensión del tobillo (VI=14.54% y VE=11.15%). No se encontraron diferencias en las alturas de los saltos ni en las potencias mecánicas en la batida entre los vendajes. Tampoco se encontraron diferencias en el segundo pico de fuerza vertical durante la amortiguación de la caída. Sin embargo, con el vendaje inelástico, en los tests donde se buscaba máxima amorti-guación, el segundo pico de fuerza sucedía antes que con el vendaje elástico o sin vendaje. Como conclusión del estudio se aconsejaría la utilización del vendaje elástico, siempre que la economía lo permitiera, debido a que no ha modificado ningún aspecto de la biomecánica del salto y la amortiguación, produciendo una limitación en la movilidad del tobillo similar al vendaje inelástico y creando una barrera de restricción progresiva, similar a la situación fisiológica de la articulación.

Palabras clave: Biomecánica. Cinética. Deporte. Tobillo. Prevención de lesiones. Fuerzas de reacción. Plataforma de fuerzas.

This study aimed to analyze the influence of two types of prophylactic ankle taping on the vertical ground reaction forces during different jump and landing tests. Twenty seven active and healthy women volunteered for the study (age = 20.6 ± 4.1 years). Two types of prophylactic ankle taping, designed to limit supination and plantar flexion, were applied to the subjects. One of them was done with inelastic tape (VI) and the other with elastic tape (VE). The influence of these ankle tapings was analyzed in four tests; (1) Land from 0.75 m as soft as possible, (2) land from 0.30 as soft as possible, (3) jump as high as possible with hands on the hips (CMJ) and (4) jump as high as possible with a 3 m run-up and arm swing. Both types of ankle taping restricted, without significant differences between them, the supination (percentage of restriction compared to the tests without taping: VI = 40.74% and VE = 41.77%) and the plantar flexion (VI = 14.54% and VE = 11.15%). There were no differences between taping conditions in the jump heights or power outputs during the push off phase. There also were no differences in the second peak vertical force value during the landing phase of the jump. However, the peak vertical force value during the landing phase of the tests where a soft landing was required, appeared before with the inelastic taping than with the elastic tape or without taping. In conclusion, the results of the present study suggest the use of elastic taping if cost is not a limitation, because it did not modify any biomecha-nical parameter from the push off or landing phases of the jumps. Additional advantages were that the limitation in the ranges of movement was similar to the inelastic taping and that the restriction was more similar to that performed by the joint complex.

Key words: Biomechanics. Kinetics. Sport. Ankle. Injury prevention. Ground reaction forces. Force platform.

Volumen XXIVNúmero 1222007Págs. 442-450

Page 254: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

EL VENDAJE FUNCIONAL ELÁSTICO VS INELÁSTICO EN SALTOS Y AMORTIGUACIONES

VOLUMEN XXIV - N.º 122 - 2007

443A M D

INTRODUCCIÓN

Se ha extendido en la alta competición de muchos deportes el uso de los vendajes funcionales preven-tivos de tobillo para controlar el riesgo de lesio-nes1-4. Para su confección se usan diferentes tipos de vendas; elásticas, inelásticas y combinaciones de ambas. El uso de material elástico en vendajes preventivos es relativamente reciente5 y no está tan extendido como el uso de vendas inelásticas a pe-sar de que muchos fisioterapeutas creen en ciertos beneficios de las vendas elásticas y que éstas son usadas con éxito desde hace tiempo en vendajes terapéuticos. Solamente hemos encontrado un limitado trabajo que compara un vendaje fabricado íntegramente con vendas elásticas frente a otro fa-bricado íntegramente con inelásticas6. Este trabajo analizó la influencia de los dos vendajes en un test de equilibrio y encontraron que el inelástico influía de forma negativa mientras que el elástico no tenía influencia respecto a la situación sin vendaje.

Pensamos que las vendas elásticas podrían ser usadas para proteger la articulación en vendajes preventivos con igual o mayor eficacia que las inelásticas. Además aportarían una restricción pro-gresiva hasta llegar a la barrera mecánica en la que bloquearían cualquier incremento en la movilidad articular de forma parecida al comportamiento de las estructuras biológicas del sujeto y por ello se podrían adaptar mejor a las situaciones deportivas sin perjudicar la eficacia de los movimientos.

Por otro lado no abundan los trabajos que estudien el efecto sobre el rendimiento en movi-mientos similares a los que se dan en situaciones deportivas de los vendajes funcionales preventi-vos de tobillo7. La mayoría se centran en medir la influencia sobre la altura del salto o el tiempo en realizar un circuito (Tabla 1). Además, muy po-cos trabajos han estudiado lo que sucede durante la amortiguación de la caída de saltos14-16. Los vendajes funcionales preventivos de tobillo, que

Autor (año) Prueba (variable) % descenso rendimiento SIG.

Burks, et al.8 Salto vertical (altura) 4 *

10 yardas carrera lanzada (tiempo) 1.6 *

40 yardas sprint (tiempo) 3.5 *

Salto horizontal (longitud) - ns

Paris9 50 yardas (velocidad) 0.15 ns

Nelson Test de equilibrio (tiempo) 3.13 ns

Test de agilidad SEMO (tiempo) 1.57 ns

Salto vertical (altura) 2.38 ns

Paris and Sullivan10 Fuerza inversión (promedio) 6.94 ns

Fuerza inversión (pico) 7.69 ns

Fuerza eversión (promedio) 1.56 *

Fuerza eversión (pico) 4 *

Bennell y Goldie6 Equilibrio (fuerzas mediolaterales) 42.86 *

Tocar el suelo (número de veces) 536.36 *

Mackean, et al.11 Salto vertical (altura) 1.59 *

Lanzamiento en salto (distancia) 9.09 ns

Recorrer distancias cortas (tiempo) 2.86 ns

Verbrugge12 40 yardas sprint (tiempo) 0.2 ns

Salto vertical (altura) 2.88 ns

Carrera de agilidad (tiempo) - ns

Metcalfe, et al.13 Salto vertical (altura) 4.6 ***

Test de agilidad SEMO (tiempo) 2.74 ***

Rieman, et al.14 Amortiguación máxima (2º pico fuerza) 2.58 ns

Amortiguación rígida (2º pico fuerza) 14.95 ns

Tabla 1.Trabajos que ex-ploran los posibles descensos del rendimiento con la utilización del vendaje funcional de tobillo(SIG.= Significación estadística; ns = no significativo; * = p<0.05; *** = p<0.001).

Page 255: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

ABIÁN J,et al.

ARCHIVOS DE MEDICINA DEL DEPORTE

444A M D

son frecuentemente usados en deportes donde abundan los saltos podrían, aun cubriendo bien la función para la que fueron fabricados, promo-ver la aparición de nuevas y diferentes lesiones en la caída del salto al interferir en la capacidad de amortiguación de las articulaciones del tobillo y pie17. En este sentido mediante el estudio de las fuerzas de reacción verticales del suelo (VGRF) se puede observar si las limitaciones en el rango de movimiento (ROM) de la flexo-extensión y la prono-supinación, que aportan los vendajes, pudieran tener efecto sobre el impacto recibido en las caídas de saltos que parten del suelo o desde superficies elevadas14,18. Concretamente en el segundo pico de la gráfica fuerza-tiempo (F2), que es el valor más alto de las VGRF durante la amortiguación y diferentes autores lo han rela-cionado con el origen de algunas lesiones19-21.

El objetivo de este estudio ha sido analizar la in-fluencia de dos vendajes funcionales preventivos de tobillo, uno realizado con vendas inelásticas y otro con elásticas, en las VGRF de la amortigua-ción de caídas (desde 0.30 y 0.75 m), las VGRF en los aterrizajes de saltos verticales, la altura de saltos verticales y en el pico de potencia durante la batida de saltos verticales.

METODOLOGÍA

Participaron voluntariamente en el estudio 27 mujeres jóvenes, estudiantes universitarias, físi-

camente activas con las características descrip-tivas que se muestran en la Tabla 2. Los sujetos fueron informados de los riesgos asociados con los protocolos del experimento y firmaron un consentimiento, aprobado por la universidad y que cumplía las recomendaciones internacio-nales sobre investigación clínica de la American Physiological Society. Todos los sujetos practi-caban actividad física regularmente, al menos 2 días a la semana, pero sin competir a nivel profesional. Ninguno usaba prótesis ni ortesis y no habían tenido lesiones en el miembro inferior en los últimos 2 años. Se comprobó mediante exploración de un fisioterapeuta, que ninguno de los participantes tuviera distensión de ligamen-tos del tobillo que provocara bostezo articular. Todos los sujetos realizaron los tests con calzado polivalente para deportes de cancha de caracte-rísticas similares entre sí.

Para su descripción los sujetos fueron tallados y pesados. Se calculó la masa libre de grasa, que se obtuvo restando a la masa total la masa de grasa. La masa de grasa se calculó a partir del porcentaje de grasa del sujeto, que se obtuvo sumando seis pliegues (subescapular, tríceps, suprailíaco, abdo-minal, anterior del muslo y pierna) y aplicando la ecuación para mujeres que propone Carter22. Se tomaron las longitudes de pierna de los sujetos con el fin de estandarizar las longitudes de las tiras en ambos vendajes y la tensión en el elástico.

Se realizaron dos tipos de vendaje funcional pre-ventivo de tobillo (sobre ambos tobillos a la vez) con prevendaje a nivel maleolar exclusivamente (Cramer. BSN medical. Vibraye, France) que limi-taban la supinación y la extensión: uno inelástico y otro elástico. Para el vendaje inelástico (Strappal®. BSN medical. Vibraye, France), variante del pro-puesto por Neiger23 y por Perrin24, se utilizaron 2 anclajes, colocados de forma estandarizada según las proporciones de cada sujeto: el anclaje inferior se colocó por encima de las cabezas de los meta-tarsos y el superior al 36% de la distancia desde el maleolo externo hasta la cabeza del peroné, tomando como punto de origen el maleolo exter-no. Se usaron 8 tiras activas y entre 13 y 17 tiras de cierre, dependiendo de las dimensiones de las extremidades del sujeto (Figura 1).

Edad 20.6±4.1 años

Masa 58.45±6.95 kg

Talla 164.3±6.2 cm

L pierna 84.1±4.0 cm

FFM 47.74±4.90 kg

TABLA 2.Variables

descriptivas de la muestra estudiada

(FFM= masa libre de grasa)

FIGURA 1.Fabricación del

vendaje funcional preventivo con

vendas inelásticas (2 = anclajes; 3, 4 y 5 = tiras activas; 6 =

cierre)

Page 256: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

EL VENDAJE FUNCIONAL ELÁSTICO VS INELÁSTICO EN SALTOS Y AMORTIGUACIONES

VOLUMEN XXIV - N.º 122 - 2007

445A M D

Para el vendaje elástico (Tensoplast® Sport. BSN Medical. Vibraye, France), realizado con las indi-caciones que propone Neiger23, también se utiliza-ron 2 anclajes, colocados de forma estandarizada según las proporciones de cada sujeto: el anclaje inferior se colocó por encima de la cabeza de los metatarsos y el superior al 82% de la distancia desde el maleolo externo a la cabeza del peroné, tomando como punto de origen el maleolo exter-no y se usaron 6 tiras activas (Figura 2).

Se midieron las restricciones del vendaje con un goniómetro manual (Alimed Inc, Dedham Mass) con sensibilidad de 2º. Se tomaron la flexión, extensión, supinación y pronación máxi-mas pasivas del tobillo derecho con el sujeto colocado en decúbito prono sobre una camilla, siguiendo los protocolos propuestos por Root25. Se realizaron estas mediciones en reposo y una vez colocados los vendajes.

Se midieron las VGRF de los tests mediante una plataforma Kistler 9281 CA (Kistler, Suiza), colo-cada bajo el pavimento sintético de un polidepor-tivo, con una frecuencia de muestreo de 1000 Hz.

Se hizo una sesión de familiarización con las diferentes pruebas en un día diferente al de los tests. En todas las sesiones se realizó un calenta-miento previo, estandarizado y supervisado de 8 minutos. Se realizaron los tests en tres situacio-nes: sin vendaje (N), con vendaje elástico (VE) y con vendaje inelástico (VI). Tanto los tests como las situaciones se establecieron de forma aleato-ria en cada sujeto.

Los tests fueron: amortiguación de caída desde 0.75 m (L0.75)

26, amortiguación de caída desde 0.30 m (L0.30) (similar al anterior pero cayendo desde 0.30 m), salto con contramovimiento (CMJ) y salto con aproximación (SAL) (con 3 pasos de aproximación se realizaba un salto vertical con ayuda de brazos). Los 3 primeros se hicieron con las manos en la cintura. En los 2 primeros se le pedía al sujeto que amortiguara todo lo posible, mientras que en el CMJ y SAL se buscaba la mayor altura de salto realizando la batida y la amortiguación con los 2 pies a la vez. Se realizaron de cada test 3 ensayos metodoló-

gicamente correctos. Para el análisis se escogió en los tests de amortiguación los que menores VGRF presentaban y en los tests de salto los de mayor altura (respetando así el criterio del obje-tivo planteado en cada test).

Se analizó en los tests de salto: la altura a partir del tiempo de vuelo (h) y el pico de potencia durante la batida (PP). En la amortiguación de la caída de to-dos los tests se registraron: F2, el instante en el que sucedía (T2) y el tiempo desde el inicio de contacto con el suelo (considerado a partir de que el valor de las fuerzas de reacción verticales superaba los 3 N) hasta que se cruzaba por primera vez el valor del peso en la gráfica de fuerza-tiempo (TBW).

Se calculó el número mínimo de sujetos en 27 con una potencia de 0.8 y un nivel de significa-ción α de 0.05, considerando la diferencia en T2 entre la situación sin vendaje y la situación con vendaje inelástico.

Para el análisis de los datos se usó el software estadístico Statistica for Windows 7.0 (Stasoft, Tulsa, OK, USA). Se hallaron medias, desviacio-nes típicas y correlaciones. En las variables de la amortiguación se usó una ANOVA para datos re-petidos de dos factores 3 × 4 (situación × test) y otra ANOVA para datos repetidos de dos factores 3 × 2 (situación × test) para las variables de la ba-tida. Se utilizó el test post-hoc de Scheffé, cuando apareció alguna diferencia significativa. Se usó el criterio estadístico de significación de p<0.05.

RESULTADOS

En el rango de movimiento de tobillo aparecieron diferencias significativas (p<0.001) tanto en la

FIGURA 2.Fabricación del vendaje funcio-nal preventivo con vendas elásticas (2 = anclajes; 3, 4 y 5 = tiras activas; 6 = cierre)

Page 257: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

ABIÁN J,et al.

ARCHIVOS DE MEDICINA DEL DEPORTE

446A M D

Flexión (º) 17.9±7.4 16.4±7.2 19.5±5.9Extensión (º) 64.6±7.4 58.1±7.4(***) 53.0±6.4(***)

Supinación (º) 36.0±4.6 21.0±5.1(***) 20.7±3.7(***)

Pronación (º) 13.9±2.3 13.5±1.8 13.2±1.8

TABLA 3.Rango de movimiento del tobillo sin vendaje

(N) y una vez colocado el vendaje elástico

(VE) e inelástico (VI)

TABLA 4.Altura del salto (h) y pico de potencia

(PP) en las dife-rentes situaciones registradas en el

salto con contramo-vimiento (CMJ) y en el salto con aproxi-

mación (SAL)

FIGURA 3.Medias (± error

estándar) del instante en el que

sucedía el segundo pico de fuerza (T2) en los tests donde

el objetivo era buscar la máxima

amortiguación. (L0.75 = amortigua-

ción desde 0.75 m; SAL = salto con aproximación; CMJ = salto con contra-

movimiento; L0.30 = amortiguación

desde 0.30 m).

ALT BAJ CMJ SAL

N VE VI N VE VI N VE VI N VE VI

F2 (BW) 7.60 7.74 7.73 3.94 3.96 4.10 4.79 4.80 4.69 5.01 5.37 4.95

(1.81) (1.72) (2.01) (1.09) (1.07) (1.29) (1.75) (1.07) (1.55) (1.68) (1.90) (1.77)

T2 (s) 0.040 (***) 0.038 (*) 0.036 0.051 (**) 0.049 (*) 0.043 0.060 0.059 0.057 0.059 0.059 0.055

(0.006) (0.006) (0.006) (0.015) (0.014) (0.011) (0.023) (0.016) (0.018) (0.023) (0.019) (0.020)

TBW (s) 0.594 0.556 0.593 0.564 0.592 0.598 0.392 0.390 0.402 0.412 0.397 0.42

(0.128) (0.128) (0.129) (0.132) (0.140) (0.156) (0.156) (0.147) (0.155) (0.158) (0.162) (0.161)

extensión como en la supinación entre la situa-ción N y VE y entre la situación N y VI. Por otro lado, no se encontraron diferencias significativas entre las dos situaciones de vendaje (VE y VI) (Tabla 3).

TABLA 5.Variables de la amortiguación de la caída en los tests: amortiguación desde 0.75 m (L0.75), amortiguación desde 0.30 m (L0.30), salto con contramovimiento (CMJ) y salto con aproximación (SAL) en las situaciones: sin vendaje (N), con venaje elástico (VE) y con vendaje inelástico (VI)

F2 = segundo pico de fuerza; T2 = instante en el que sucedía el segundo pico de fuerza; *** = diferencias de p<0.001; ** = diferencias de p<0.01; * = diferencias de p<0.05). las diferencias son respecto a la situación de vendaje inelástico.

(*** = diferencias de p<0.001 comparando con la situación sin vendaje)

V VE VI

h(m) 0.247 0.244 0.250 0.288 0.286 0.285 (0.044) (0.043) (0.045) (0.046) (0.050 (0.050)

PP (W/kg) 37.15 37.77 38.93(*) 46.13 45.85 45.08 (6.75) (6.27) (6.10) (7.04) (6.51) (7.21) (N = sin vendaje; VE = vendaje elástico; VI = vendaje inelástico; * = diferencias de p<0.05 comparando vendaje inelástico respecto a la situación sin vendaje)

N VE VI N VE VI

No se encontraron diferencias en al altura del salto ni en el pico de potencia por la utilización de los vendajes en ninguno de los dos tests de salto estudiados, excepto en el pico de potencia, en el que VI presentaba valores superiores a N (F2,52 = 3.50, p<0.05) (Tabla 4). Comparando ambos tests de salto, se registraron mayores al-turas en el salto realizado con aproximación que en el CMJ (F1,156 = 29.29, p<0.001) y mayores PP (F1,156 = 54.631, p<0.001).

No se encontraron diferencias con la utilización de los vendajes en la amortiguación de las caí-das, ni en F2, ni en TBW en ninguno de los tests (Figura 3). Se encontraron diferencias en T2, con menores valores en VI respecto a N y VE, en L0.75 (F2,52 = 9.37, p<0.001) y L0.30 (F2,52 = 6.83, p<0.01) (Tabla 5 y Figura 4). Sin embargo, no se encontraron diferencias entre N y VE.

Se encontraron correlaciones entre F2 y T2 (p<0.001) en los test donde el objetivo era amortiguar todo lo posible; tanto en la situación sin vendaje (L0.75: r = -0.71 y L0.30: r = -0.64), como en VE (L0.75: r = -0.63 y L0.30: r = -0.53) y en VI (L0.75: r = -0.65 y L0.30: r = -0.71) (Figura 5). También correlacionó el PP y h (p<0.001) en la situación sin vendaje (CMJ: r = 0.66 y SAL: r = 0.75), como en VE (CMJ: r = 0.66 y SAL: r = 0.66) y en VI (CMJ: r = 0.72 y SAL: r = 0.77).

Al comparar los test entre sí aparecieron dife-rencias en F2, T2 y TBW (F2: F3,312 = 85.064, p<0.001; T2: F3,312 = 29.44, p<0.001; TBW: F3,312 = 41.31, p<0.001). En F2 se obtuvieron mayo-res valores en el test L0.75 seguidos del salto con

Page 258: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

EL VENDAJE FUNCIONAL ELÁSTICO VS INELÁSTICO EN SALTOS Y AMORTIGUACIONES

VOLUMEN XXIV - N.º 122 - 2007

447A M D

aproximación (L0.75 vs SAL = p<0.001), CMJ (L0.75 vs CMJ = p<0.001) y L0.30 (L0.75 vs L0.30 = p<0.001), que fue en el test que menores valores de F2 se obtuvieron (L0.30 vs CMJ = p<0.05; L0.30 vs SAL = p<0.001), sin embargo no se encon-traron diferencias significativas entre el CMJ y el salto con aproximación (p = 0.59). Los menores valores en T2 se registraron en L0.75 (L0.75 vs L0.30 = p<0.01; L0.75 vs CMJ = p<0.001 y L0.75 vs SAL = p<0.001) y los mayores en el CMJ y el salto con aproximación, siendo que entre el CMJ y el salto con aproximación no se encontraron diferencias significativas (p=0.98). En TBW los resultados obtenidos en los tests donde se busca-ba la máxima amortiguación (L0.75 y L0.30) fueron similares pero superiores a los registrados en los tests donde el objetivo se centraba en realizar un salto máximo (p<0.001).

DISCUSIÓN

Ambos vendajes cumplieron la función para la que habían sido confeccionados: restringir la supinación (restricción del rango de movimiento: VI = 40.74% y VE = 41.77%) y la extensión (res-tricción del rango de movimiento: VI = 14.54% y VE = 11.15%), dado que una combinación de ambos movimientos se asocia al mecanismo más habitual de esguince de tobillo27-29. Sin embargo no influyeron en la flexión, ni la pronación. Que el vendaje limite su efecto a los movimientos que se intenta restringir es importante para que mini-mice su posible interferencia en la eficacia depor-tiva. Otros autores que han medido la influencia en la restricción de los rangos de movimiento del tobillo con vendaje inelástico obtienen valores similares a los de nuestro estudio30-34.

No se encontraron diferencias con la utilización de los vendajes ni en la altura del salto, ni en el pico de potencia mecánica en la batida. So-lamente el pico de potencia de la batida en el CMJ fue mayor con el vendaje inelástico que sin vendaje (p<0.05). Posiblemente la utilización del vendaje inelástico provocó modificaciones en las relaciones de fuerza y velocidad durante la batida, quizás, aunque no fue medido, debido a las limitaciones en los rangos de movimiento

dinámico que producía el vendaje durante el salto. No obstante este incremento en el pico de potencia no se vio reflejado en una modificación de la altura del salto por lo que el vendaje no condicionó un movimiento menos eficaz. Sacco, et al.16 no encontraron diferencias significativas en el pico de fuerza durante la batida por la utilización de un vendaje inelástico, aunque sí una tendencia a que los vendaje incrementaran este valor.

Existe discrepancia entre autores respecto a si el vendaje puede o no disminuir la capacidad de salto, aunque debemos destacar que todos los trabajos que hemos revisado8,9,11-13 han utili-zado el test de saltar y tocar, una prueba menos reproducible que otros tests de salto y que pre-senta problemas metodológicos. Sólo hemos encontrado un trabajo18 que al igual que en este estudio encontró que los vendajes funcionales no

FIGURA 4.Medias (± error es-tándar) del segundo pico de fuerza en la amortiguación de las caídas (F2) en los cuatro tests estudia-dos (CMJ = salto con contramovimiento; SAL = salto con aproximación; L0.30 = amortiguación desde 0.30 m; L0.75 = amortiguación desde 0.75 m)

FIGURA 5.Correlación entre el segundo pico de fuerza (F2) y el instante en el que sucedía (T2) en el tests sin vendaje

Page 259: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

ABIÁN J,et al.

ARCHIVOS DE MEDICINA DEL DEPORTE

448A M D

B I B L I O G R A F Í A

influían en la altura del salto. Tanto en este estu-dio como en el de Barceló18 es posible que tanto los protocolos de los tests, muy estandarizados, como la metodología de medición (plataforma de fuerzas) permitieran unas mediciones con me-nores variaciones debidas a aspectos externos.

La utilización de los vendajes no ha influido en F2 durante la amortiguación de las caídas, al igual que les sucedió a Riemann, et al.14, y a Sacco, et al.16, analizando amortiguaciones desde 0.6 m y previo salto. Sí se ha visto una disminución en el valor de T2 por la utilización del vendaje inelástico, tanto en las caídas desde 0.75 como desde 0.30, resultados similares a los encontrados por Riemann, et al.14 en amortigua-ciones desde 0.60 m. Por otro lado, aunque sin significación estadística, en SAL y en el CMJ también se vio una tendencia a la disminución de T2 por la utilización del vendaje inelástico. La disminución de T2 se ha visto en diferentes estu-dios que correlacionaba con incrementos en los valores del segundo pico de fuerza en la amorti-guación35,36. De esta forma tener T2 menor suele implicar mayores valores en F2. Aunque en este estudio no hemos encontrado valores superiores de F2 por la utilización de los vendajes sí podrían verse incrementados estos valores en situaciones concretas al tener menor tiempo para realizar la amortiguación.

En la amortiguación del CMJ y del SAL, F2 fue mayor que en el test L0.30 pese a que en estos dos saltos se caía desde alturas menores (hCMJ = 0.247 ± 0.044 m; hSAL = 0.286 ±

0.047 m). Creemos que puede ser debido a que en L0.30 la atención se centraba en amortiguar todo lo posible mientras que en los tests de sal-to el objetivo consistía en alcanzar la máxima altura. Esto justificaría centrar la atención en la amortiguación de caídas de saltos en el mar-co escolar y deportivo de ocio, para reducir el riego de posibles lesiones. Sería especialmente importante realizarlo, con conceptos sencillos, desde la infancia, momento más sensible para el aprendizaje. En este sentido ha habido estudios como, por ejemplo, el de Prapavessis, et al.38 que redujeron F2 en amortiguaciones desde 0.30 m después de 4 sesiones, en las que se explicaba a los alumnos donde debían centrar la atención durante las amortiguaciones.

Como conclusión de este trabajo se desprende que tanto el vendaje elástico como el inelástico no han afectado al rendimiento y sin embargo han limitado los últimos grados de movimiento del mecanismo más habitual de lesión del tobillo, por lo tanto estaría recomendada su utilización, como método preventivo en situaciones en las que el riesgo de lesión lo requiriera. Aconsejaría-mos la utilización del vendaje elástico, debido a que no modifica ningún aspecto de la biomecá-nica del tobillo en los saltos y amortiguaciones, mientras que el inelástico ha cambiado la rela-ción de fuerza-velocidad durante la batida del salto y ha adelantado la aparición del segundo pico de fuerza en la amortiguación, que podría implicar en ciertas caídas, aunque no han sido observadas en este estudio, amortiguaciones más duras.

1. Brizuela G, Llana S, Ferrandis R. Aspectos epi-demiológicos del balonmano y su relación con el calzado. Arch Med Dep 1996;54:267-74.

2. Grabbett TJ. Incidence of injury in amateur rugby league sevens. Brit J Sport Med 2002;36:23-6.

3. Osborne MD, Rizzo TD. Prevention and treat-ment of ankle sprain in athletes . Sports Med 2003;33:1145-50.

4. Junge A, Dvorak J. Soccer Injuries. Sports Med 2004;34:929-38.

5. Hume PA, Gerrard DF. Effectiveness of external ankle support. Sports med 1998;25:285-312.

6. Bennell KL, Goldie PA. The differential effects of external ankle support on postural control. J Orthop Sport Phys Ther 1994;20:287-95.

Page 260: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

EL VENDAJE FUNCIONAL ELÁSTICO VS INELÁSTICO EN SALTOS Y AMORTIGUACIONES

VOLUMEN XXIV - N.º 122 - 2007

449A M D

7. Meana M, López JL, Grande I, Aguado X. Bio-mecánica del vendaje funcional preventivo de tobillo (II). Arch Med Dep 2005;106:101-9.

8. Burks RT, Bean BG, Marcus R, Barker HB. Analysis of athletic performance with prophylactic ankle devices. Am J Sports Med 1991;19:104-6

9. Paris DL. The effects of the Swede-o, new cross, and McDavid ankle braces and adhesive ankle taping on speed, balance, agi l i ty and vert ical jump. J Athl Train 1992;27:253-5.

10. Paris DL, Sul l ivan SJ . I sometr ic s trength of rearfoot inversion and eversion in nonsupported, taped, and braced ankles assessed by a hand-held dynamometer. J Orthop Sport Phys Ther 1992;15: 229-35.

11. Mackean LC, Bell G, Burnham RS. Prophylactic ankle bracing Vs Taping: effects on functional performance in female basketball players. J Orthop Sport Phys Ther 1995;22:77-81.

12. Verbrugge JD. The effects of semirigid air-stirrup bracing vs adhesive ankle taping on motor perfor-mance. J Orthop Sport Phys Ther 1996;23:320-5.

13. Metcalfe RC, Schlabach GA, Looney MA, Renehan EJ. A comparison of moleskin tape, linen tape, and lace-up brace on joint restriction and movement performance. J Athl Train 1997;32:136-40.

14. Riemann BL, Schmitz RJ, Gale MG, McCaw ST. Effect of ankle taping and bracing on vertical ground reaction forces during drop landings be-fore and after treadmill jogging. J Orthop Sport Phys Ther 2002;32:628-35.

15. McCaw ST, Cerullo JF. Prophylactic ankle stabi-lizers affect ankle joint kinematics during drop landings. Med Sci Sports Exerc 1999;31:702-7.

16. Sacco I , Yuji H, Agostini A , Yuri E , Almeida T, Sonsino C, Rizzo L, Kavamoto C, Fernandes JA , Peixoto JC. Influence of ankle devices in the jump and landing biomechanical responses in basketball. Revista Brasileña de Medicina del Deporte 2004;10:453-8.

17. Alt W, Lohrer H, Gollhofer A . Functional pro-perties of adhesive ankle taping: Neuromuscular and mechanical effects before and after exercise. Foot Ankle Int 1999;20:238-45.

18. Barceló O. Estudio biomecánico de la influencia del vendaje funcional del tobil lo sobre el rango de movimiento art icular y sobre el rendimiento

deportivo, Tesis doctoral. Universidad politécnica de Madrid. Madrid, 2004.

19. Mizrahi J, Susak Z. Analysis of parameters affec-ting impact force attenuation during landing in human vertical free fall. Engineering in Medicine 1982;11:141-7.

20. Dufek JS, Bates BT. Biomechanical factors asso-ciated with injury during landing in jump sports. Sports Med 1991;12:326-37.

21. McNair PJ, Marshall RN. Landing characteristics in subjects with normal and anterior cruciate l igament deficient knee joints. Arch phys med rehabil 1994;75:584-9.

22. Carter JE. Anthropometryc instruments and mea-surements used in the Montreal Olympic Games antropologycal project. In: Physical Structure of Olympics Athletes. Part I: MOGAP. Carter J. E. L. Med Sport. 16: 150-155. Karger, Basel. 1982.

23. Neiger H. Los vendajes funcionales, aplicaciones en traumatología del deporte y en reeducación. Barcelona. Masson. 1990.

24. Perrin DH. Athletic taping and bracing. Cham-paingn. Human Kinetics. 2005.

25. Root ML. Exploración biomecánica del pie. Madrid. Ortocen Editores. 1991

26. Abián J, Alegre LM, Lara AJ, Jiménez L, Aguado X. Fuerzas de reacción del suelo en pies cavos y planos. Arch Med Dep 2005;108:285-92.

27. Rodríguez C. Patología del pie y del tobillo en el baloncesto. Arch Med Dep 1998;68:497-503.

28. Manone l l es P, Tárrega L . Ep idemio log ía de las les iones en e l ba loncesto . Arch Med Dep 1998;68:479-83.

29. Meana M, López JL, Grande I, Aguado X. El esguince de tobillo en deportes de colaboración-oposición: mecanismos de lesión. Arch Med Dep 2000;75:59-66.

30. Gehlsen GM, Pearson D, Bahamonde R. Ankle joint strength, total work, and ROM: compari-son between prophylactic devices. J Athl Train 1991;26:62-5.

31. Gross MT, Lapp AK, Davis M. Comparison of Swede-O-universa l ankle support and a ircast sport-stirrup orthoses and ankle tape in restric-ting eversion-inversion before and after exercise. J Orthop Sport Phys Ther 1991;13:11-9.

Page 261: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

ABIÁN J,et al.

ARCHIVOS DE MEDICINA DEL DEPORTE

450A M D

32. Wilkerson GB. Comparative biomechanical effects of the standard method of ankle taping and a taping method designed to enhace subtalar sta-bility. Am J Sports Med 1991;19:588-95.

33. Greene TA, Hillman SK. Comparison of support provided by a semirigid orthosis and adhesive ankle taping before, during, and after exercise. Am J Sports Med 1990;18:498-506.

34. Meana M, López JL, Grande I, Aguado X. Bio-mecánica del vendaje funcional preventivo de tobillo. Arch Med Dep 2005;100:99-108.

35. Hewett TE, GD. Myer, KR. Ford RS. Heidt AJ. Colosimo SG. Mclean AJ, Van den Bogert MV. Paterno, Succop P. Biomechanical measures of

neuromuscular control and valgus loading of the knee predict anterior cruciate ligament injury risk in female athletes. Am J Sports Med 2005;33:492-501.

36. Abián J, Alegre LM, Lara AJ, Aguado X. Diferencias de sexo durante la amortiguación de caídas en tests de salto. Arch Med Dep 2006;116:441-50.

37. Abián J, Alegre LM, Lara AJ, Aguado X. Diferencias de sexo durante la amortiguación de caídas en tests de salto. Arch Med Dep 2006;116:441-50.

38. Prapavessis H, Mcnair PJ, Anderson K, Hohepa M. Decreasing landing forces in children: the effect of instructions. J Orthop Sport Phys Ther 2003;33:204-7.

Page 262: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL
Page 263: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL
Page 264: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL
Page 265: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL
Page 266: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL
Page 267: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL
Page 268: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL
Page 269: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

©Journal of Sports Science and Medicine (2008) 7, 350-356 http://www.jssm.org

Received: 03 April 2008 / Accepted: 25 June 2008 / Published (online): 01 September 2008

Ankle taping does not impair performance in jump or balance tests Javier Abián-Vicén 1 , Luis M. Alegre 1, J. Manuel Fernández-Rodríguez 2, Amador J. Lara 1, Marta Meana 3 and Xavier Aguado 1 1 Faculty of Sports Sciences and 2 School of Physiotherapy, University of Castilla-La Mancha. Toledo, Spain. 3 Faculty of Sports Sciences, Catholic University of San Antonio. Murcia, Spain.

Abstract This study aimed to investigate the influence of prophylactic ankle taping on two balance tests (static and dynamic balance) and one jump test, in the push off and the landing phase. Fifteen active young subjects (age: 21.0 ± 4.4 years) without previous ankle injuries volunteered for the study. Each participant per-formed three tests in two different situations: with taping and without taping. The tests were a counter movement jump, static balance, and a dynamic posturography test. The tests and condi-tions were randomly performed. The path of the center of pres-sures was measured in the balance tests, and the vertical ground reaction forces were recorded during the push-off and landing phases of the counter movement jump. Ankle taping had no influence on balance performance or in the push off phase of the jump. However, the second peak vertical force value during the landing phase of the jump was 12% greater with ankle taping (0.66 BW, 95% CI -0.64 to 1.96). The use of prophylactic ankle taping had no influence on the balance or jump performance of healthy young subjects. In contrast, the taped ankle increased the second peak vertical force value, which could be related to a greater risk of injury produced by the accumulation of repeated impacts in sports where jumps are frequently performed. Key words: Biomechanics, propioception, force platform, ground reaction forces, center of pressure.

Introduction Ankle sprains represent from 38 to 50% of the total sport injuries (Jones et al., 2000; Leaf et al., 2003; Thacker et al., 1999; Verbrugge, 1996). Garrick and Requa (1988) estimated that one-sixth of the total time lost by sport injuries was attributed to ankle sprains. Functional taping and ankle braces are passive preventive measures fre-quently utilised in sports (Osborne and Rizzo, 2003; Rob-bins and Walked, 1998). Studies on the influence of func-tional taping on sports tasks during actual competition are scarce (McCaw and Cerullo, 1999; Riemann et al., 2002), and most of them only analyse the passive ROM restric-tion (Hume and Gerrard, 1998). The studies that analyse jump tests and static balance are the most common among those that assess the influence of ankle taping on per-formance tasks in sports (Hume and Gerrard, 1998; Cor-dova et al., 2002). Research that studied jump perform-ance focused on the changes in jump height with taped subjects (Burks et al., 1991; Mackean et al., 1995; Ver-brugge, 1996). Some of them reported decreases in jump performance (Burks et al., 1991; Mackean et al., 1995; Verbrugge, 1996), but this remains a controversial issue.

In addition, a few studies have analysed drop landings and functional taping (McCaw and Cerullo, 1999; Riemann et al., 2002), showing decreases in the time to dissipate landing forces and adverse effects on the landing kinemat-ics. The risk of ‘overuse’ injuries will increase if the abil-ity to reduce landing forces is impaired by limiting the mobility of the lower extremities (Dufek and Bates, 1991; Hewett et al., 2005).

The studies on balance have focused on the centre of pressure (COP) trajectories to evaluate performance (Bennell and Goldie, 1994; Cordova et al., 2002; Feuer-bach and Grabiner, 1993; Hertel et al., 1996; Kinzey et al., 1997; Paris, 1992). Better performance is shown by shorter trajectories or narrower areas of the COP. None-theless, some authors have utilised less accurate methods to evaluate balance, such as counting the number of times the subject needed to keep his balance (Bennell and Goldie, 1994), or the time spent by the subject on a fixed bar (Paris, 1992). There are contradictory results on the influence of preventive ankle taping on balance tests. Hertel et al. (1996) found no differences between subjects with and without taping in three balance tests. One of them was performed with static monopodal stance and the other two were dynamic tests. However, other authors such as Bennell and Goldie (1994) concluded that ankle taping led to a decreased postural control in similar bal-ance tests.

Therefore, studies on the effects of ankle taping during specific movements, such as jumps or balance tasks, are scarce, and its influence on sports performance is controversial. The present study analysed the changes in ground reaction forces and the path of the COP during balance tests. The performance of taped subjects during static and dynamic balance tasks could be improved by the increase in exteroceptive input provided by the taping (Feuerbach and Grabiner, 1993). From previous studies, we hypothesised that prophylactic ankle taping on unin-jured subjects would decrease their jump performance and increase the peak vertical forces during the landing phase. On the other hand, we expected an increase in the sub-jects’ performance in the balance tasks, especially in the static balance tests. More biomechanical research on the effects of functional taping on sports performance is nec-essary to clarify its effects during actual sports tasks. Therefore, the research question of this study was: does prophylactic ankle taping influence on performance of two balance tests (static and dynamic balance) and the push off and landing phase of one jump test?

Research article

Page 270: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

Abian-Vicen et al.

351

Methods Design The subjects performed the experiment in three different days. In the first session, anthropometric measurements and a clinical assessment of the subjects’ ankles were performed. The second day was used to familiarise the subjects with the test protocols, and the balance and jump tests were performed on the third day. Sessions 2 and 3 were separated by no more than one week. Before partici-pation, all the subjects were informed of the risks associ-ated with the experimental protocol and they were asked to sign a written consent form approved by the Institu-tional Review Board of the Faculty of Sports Sciences of the University of Castilla-La Mancha. Participants Fifteen physically active subjects, seven men and eight women, volunteered for the study. Their physical charac-teristics are given in Table 1. The participants are regu-larly involved in recreational sports, at least twice a week, but none of them had competed professionally. None of the subjects have used ankle taping or bracing (Bennell and Goldie, 1994) or have had lower limb injuries in the last 6 months (Greene and Hillman, 1990; Gross et al., 1991). An experienced physiotherapist confirmed this information with a medical history and a physical exami-nation, including ligamentous and range-of-motion tests one week before testing. The subjects performed all the tests with indoor court shoes. Table 1. Characteristics of the participants in the study. Data are means (±SD).

Age (years) 21.0 (4.4) Height (m) 1.72 (.09) Body mass (kg) 71.1 (11.4) Lower limb length (cm) 87.5 (6.8) Fat free mass (kg) 59.9 (12.0)

Intervention The anthropometric characteristics were determined using a calibrated scale with height rod (Seca Ltd, Hanover, Germany), an anthropometer (GPM, SiberHegner Ltd., Zurich, Switzerland), a 1.5-m flexible tape (Holtain, Croswell, Crymmych, UK), a bicondylar caliper (GPM, SiberHegner Ltd., Zurich, Switzerland), and skinfold calipers (Holtain, Croswell, Crymmych, UK). Fat mass was calculated from six skinfold measurements (triceps, subscapular, umbilicus, suprailium, thigh, and lower leg) according to the equations of Carter (1982). Fat free mass (FFM) was calculated by subtracting fat mass from total mass and muscular mass (expressed as a percentage of total mass) was calculated by subtracting bone and resid-ual mass from FFM.

A prophylactic taping, modified Gibney closed-basket-weave (Wilkerson, 1991) (designed for subjects without previous ankle injuries to restrict ankle inversion) was done in both ankles by a physiotherapist, with a pre-wrap, to protect the Achilles tendon and restrict ankle inversion. Two adhesive anchors were applied to the skin according to the subjects’ body dimensions (Figure 1). The inferior adhesive anchor was applied over the meta-tarsal head with six active strips that limited ankle inver-sion, and 13−17 strip locks were utilised, depending on the size of the lower limb.

Each participant performed the three tests in two different situations: with taping (T) and without taping (NT). The tests were as follows: countermovement jump (Figure 2), static balance (Figure 3), and a dynamic pos-turography test (Figure 4). The tests and conditions (T-NT) were randomly performed. Static balance tests were performed on a force platform (Piezoresistive force plat-form Dinascan 600M; IBV, Valencia, Spain). The force data were digitally converted and stored in a computer for subsequent analysis using the software Estabilometría (IBV, Valencia, Spain). The force-time data from the countermovement jump were assessed on a Quattro Jump

Figure 1. Ankle taping procedure. The superior anchor (second photo) was applied in a standardised way according to the subject’s body dimensions, at 35% of the distance from the lateral malleolus to the fibula head.

Page 271: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

Ankle taping, balance and jump

352

Figure 2. Sequence and force-time data from a countermovement jump. The first (F1) and second (F2) peak vertical force values in the landing phase are shown.

Portable Force Plate System (Kistler, Winthertur, Switzer-land) at 500 Hz. This sample rate has been previously utilised for assessing landings in the studies of Hopper et al. (1999) and Ozguven and Berme (1988). The forces were normalised and expressed as times body weight (BW). A standardised 10-min warm-up was carried out by the participants before each session. The warm-up con-sisted of 5 min at 175 W on a cycle ergometer Ergomedic 894 Ea (Monark, Varberg, Sweden), stretching of the lower limb muscles directed by the researcher, and six jumps (three submaximal and three maximal). Outcome measures Countermovement jump: The subjects performed the test on the force platform with the hands placed on the hips during the whole jump. The knee angle during the counter movement was not controlled. The participants performed three valid trials and the one with the greatest jump height was recorded for further analysis (Figure 2). The variables

analysed during the push-off phase of the jump test were jump height (h), from the flight time, peak vertical forces (PF) and peak power (PP), obtained from the integration of the force-time record. In addition, in the landing phase, we analysed the first and second peak vertical force val-ues (F1 and F2), the time that elapsed from the feet con-tact to F1 and F2 (T1 and T2, respectively), and the time from feet contact until the vertical ground reaction forces reached the subject’s weight for the first time after the landing movement (TBW).

Static balance on monopodal stance: The subjects had to remain as still as possible standing on the right leg, with the left lower limb at 90º of hip and knee flexion, during 15 s. Their hands had to be placed on the hips throughout the test, and the feet were placed in the same location on the plate in all the trials. The aim of the test was to keep to the minimum the area in which the move-ment of the subject was taking place, defined by the tra-jectory of the COP (Figure 3).

Page 272: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

Abian-Vicen et al.

353

Figure 3. Subject’s position (left) and path of the centre of pressures (right) during the static balance test.

The variables analysed were the area covered by the COP and the average position in the antero-posterior axis (av-erage of X values) and medial-lateral axis (average of Y values). Three trials were completed and the best per-formance, that is, the one with the lower area, was re-corded for subsequent statistical analysis.

Postural sway test: Dynamic balance was meas-ured using computerised dynamic posturography: the subjects were in standing position on a force platform with hands on hips, and balance was assessed by modify-ing visual feedbacks and asking the participants to score a circle as fast and as accurately as possible in response to the changes in the visual feedback by moving their bod-ies. Eight red circles, projected in a wide screen in front of the subject, were randomly lit for periods of 4-6 s. The test lasted 40 s. The analysis of the transitional period from one lit centre to another included the calculation of the time to reach the lit centre and the percentage of the time during which the subject remained inside the centre

as a percentage of the overall time of the lighting of the centre (hits). The best of three trials, that is, the one with the longest time into the target, was recorded for subse-quent analysis (Figure 4).

All the variables analysed were recorded from the best trials because we aimed to compare maximal per-formance and not patterns obtained by averaging the data from several trials (Bosco et al., 1999; Macpherson et al., 1995).

The reliability of the main variables was assessed with the intraclass correlation coefficient (ICC) and the typical error, from three measurements of each variable (Hopkins 2000). In a pilot study, carried out with six subjects, the ICCs were very high for all the variables (0.94-0.99). Typical errors in the jump height, F2 value, area covered by COP in the test of the static balance on monopodal and hits from the postural sway test were 0.16 cm, 0.11 BW, 7.37 cm2 and 2.47%, respectively.

Figure 4. Schematic illustration of the postural sway test (left) and typical representation of the path of the centre of pressures on the force platform (right).

Page 273: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

Ankle taping, balance and jump

354

Table 2. Differences between taped and untaped conditions in terms of balance performance variables. Data are means (±SD).

Balance tests

Postural sway Static balance Time (s) Hits (%) Average X (cm) Average Y (cm) Area (cm2) NT 2.125 (.273) 60.00 (10.89) 40.2 (5.1) -30.3 (19.0) 88.17 (50.09) T 2.284 (.271) 60.23 (11.90) 43.4 (6.9) * -27.1 (17.9) 91.14 (38.88) % difference 7.55 .37 8.05 10.60 3.36

NT = without ankle taping; T = with ankle taping; * = p < 0.05 Data analysis Based on the data obtained in a pilot study, the minimal number of subjects required with a power of 0.8 and a level of significance α of 0.05 was calculated to be 14, considering differences in F2 between T and NT. Descrip-tive statistics included mean and standard deviations; relationships between variables were examined using Spearman´s correlation test. Differences between T and NT conditions were assessed with the Wilcoxon matched-pair test. Significance was accepted at the level of P < 0.05. Table 4. Main correlations found between the taped and untaped conditions.

Variable r Static balance area .80 *** PF .73 ** PP .92 *** h .98 *** F1 .93 *** F2 .87 *** T1 .61 * T2 .83 *** TBW 1.00 ***

Static balance area = area covered by the centre of pressures during the static balance test; PF = peak vertical force; PP = peak power; h = jump height; F1 = first peak vertical force value; F2 = second peak vertical force value; T1 = time elapsed from contact to F1; T2 = time elapsed from contact to F2; TBW = time from feet contact until the vertical ground reaction forces reach the subject´s weight for the first time after the landing; * p < 0.05; ** p < 0.05; *** p < 0.001. Results Tables 2 and 3 show the means, standard deviations, per-centage differences, and the levels of significance of the variables studied in the balance and jump tests, respec-tively. There were only significant differences in the av-erage of X values in the static balance test (3.23 cm, 95% CI -1.28 to 7.74) and in the F2 value of the landing (0.66 BW, 95% CI -0.64 to 1.96), with greater values noted in the T condition in both cases.

The most important correlations between the T and NT conditions are shown in Table 4. There were

significant correlations among variables in all the tests, with the exception of the postural sway test. There was a significant negative correlation between F2 and T2 in both conditions (T: r = -0.66 (95% CI -0.88 to -0.23), p < 0.01; NT: r = -0.58, (95% CI -0.85 to -0.10), p < 0.05). Discussion In the T condition, there were no performance decreases in the balance tests (Table 2). These results agree with the studies of Hertel et al. (1996) and Paris (1992), who found no differences between taped and untaped subjects in static balance tests. Nonetheless, Bennell and Godie (1994) reported performance decreases with ankle taping, whereas Feuerbach and Grabiner (1993) found perform-ance improvements. This discrepancy could be explained by the different body positions during the balance tests. For example, the subjects of Bennell and Goldie carried out the test with the free leg 10 cm above the ground level and with their eyes closed, a less stable situation than the one utilised in the present study. In addition, there were differences in the ankle taping influence on the subjects in the static and dynamic balance tests: in the static test, the pressure on the ankle by the taping could increase the exteroceptive inputs and therefore improve balance con-trol; however, in the dynamic test, the ROM restriction imposed by the taping could decrease the balance per-formance. The differences found in the average position of X values during the static balance test between the T and NT conditions showed that ankle taping slightly modified the position of the COP during the test and led to a performance decrease in this test, although the differ-ences in the area covered by the COP were not signifi-cant. The correlations found in all the tests, with the ex-ception of postural sway, showed that ankle taping would have a similar influence over all the subjects (Table 4).

Contrary to previous reports (Burks et al., 1991; Mackean et al., 1995; Verbrugge, 1996), there were no performance decreases during the push-off phase of the jump. The studies that have found lower jump heights with taping used jump tests with arm swing, without a standardisation of the arm or body movement before the

Table 3. Differences between taped and untaped conditions in the counter movement jump test. Data are means (±SD). Jump tests Push off phase Landing phase

PF (BW) PP (W/kg) h (cm) F1 (BW) F2 (BW) T1 (s) T2 (s) TBW (s) NT 2.48 (.23) 46.92 (9.90) .33 (.10) 2.49 (.94) 5.38 (1.61) .017 (.009) .057 (.023) .350 (.169) T 2.52 (.29) 45.82 (8.18) .32 (.10) 2.41 (1.22) 6.04 (1.87) * .013 (.005) .052 (.019) .327 (.143) % difference 1.37 2.35 .98 3.28 12.35 23.62 6.43 16.88

NT = without ankle taping; T = with ankle taping; PF = peak vertical force; PP = peak power; h = jump height; F1 = first peak vertical force value; F2 = second peak vertical force value; T1 = time elapsed from contact to F1; T2 = time elapsed from contact to F2; TBW = time from feet contact until vertical ground reaction forces reach the subject´s weight for the first time after the landing; * = P < 0.05.

Page 274: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

Abian-Vicen et al.

355

push-off phase. The subjects in the present study started from still position and were not allowed to perform any preparatory movements before the jump. The ankle taping might have a different degree of influence, depending on the jump test utilised. The restriction produced by the taping in the movements of the push-off phase and the greater coordination required in the less standardised jump tests, and even in those performed in actual compe-titions, could lead to lower jump heights compared with the jump tests performed from still position and without arm swing because the jump tests performed in the pre-sent study did not include preparatory movements like lateral or forward displacements before the push-off phase.

There was an increase of 0.66 BW (95% CI -0.64 to 1.96) in F2 values in the T condition. The higher F2 values may be associated with a greater risk of injury (Dufek and Bates, 1991; Hewett et al., 2005; Louw et al., 2006) because, in actual competitions, the unpredictable environment (team mates, the ball, the opponents, etc.) makes it difficult to focus attention on the landing move-ment. Therefore, it is very important to have automated movement patterns and avoid large peak forces during the landings while the subjects are focusing their attention on other aspects of the game. The participants of the present study had no previous experience with ankle taping and the results may have been different if they were accus-tomed to wearing ankle taping.

There was a low but significant negative correla-tion between F2 and T2 (T: r = -0.66, p < 0.01 and NT: r = -0.58, p < 0.05). If the ankle plantarflexors do enough eccentric work during the first moments after feet contact, F2 will appear later in the force-time record, and the F2 value will be lower because part of the force will have been absorbed by the plantarflexor muscles and, there-fore, this peak value will be delayed in time. Most types of ankle tapings limit the ankle plantarflexion ROM, which can increase even more the F2 value. Conclusion In conclusion, the use of prophylactic ankle taping had almost no influence on the balance or jump performance of healthy young subjects. In contrast, ankle taping could increase the risk of injury during landings because the peak forces were increased in the taped condition. This fact points to a proper use of ankle taping, only when it is required, like in those instances where alternative meth-ods such as propioception, technique training, or strength-ening of the ankle stabilizer muscles have failed. Future research should evaluate the effects of landing training on the force values to teach subjects who need ankle taping to decrease the vertical force values and, consequently, the risk of injury. Acknowledgments This study was partially supported by the European Social Fund and by the Council of Education of the Junta de Comunidades de Castilla-La Mancha, Spain. References Bennell, K.L. and Goldie, P.A. (1994) The differential effects of exter-

nal ankle support on postural control. Journal of Orthopaedic and Sports Physical Therapy 20, 287-295.

Bosco, C., Colli, R., Intoini, E., Cardinale, M., Tsarpela, O., Maella, A., Tihanyi, J. and Viru, A. (1999) Adaptive responses of human skeletal muscle to vibration exposure. Clinical Physiology 19, 183-187.

Burks, R.T., Bean, B.G., Marcus, R. and Barker, H.B. (1991) Analysis of athletic performance with prophylactic ankle devices. American Journal of Sports Medicine 19, 104-106.

Carter, J.E. (1982) Anthropometric instruments and measurements used in the Montreal Olympic Games anthropological project. In: Physical structure of olympics athletes. Part I: MOGAP. Ed: Carter, J.E.L. Karger, Basel. Medicine and Sport Science 16, 150-155.

Cordova, M.L., Ingersoll, C.D. and Palmieri, R.M. (2002) Efficacy of prophylactic ankle support: an experimental perspective. Na-tional Athletic Trainers 37, 446-457.

Dufek, J.S. and Bates, B.T. (1991) Biomechanical factors associated with injury during landing in jump sports. Sports Medicine 12, 326-337.

Feuerbach, W. and Grabiner, M.D. (1993) Effect of the aircast on unilat-eral postural control: amplitude and frequency variables. Jour-nal of Orthopaedic and Sports Physical Therapy 7, 149-154.

Garrick, J.G. and Requa, R.K. (1988) The epidemiology of foot and ankle injuries in sports. Clinics in Sports Medicine 7, 29-36.

Greene, T.A. and Hillman, S.K. (1990) Comparison of support provided by a semirigid orthosis and adhesive ankle taping before, dur-ing, and after exercise. American Journal of Sports Medicine 18, 498-506.

Gross, M.T., Lapp, A.K. and Davis, M. (1991) Comparison of Swede-o-universal ankle support and aircast sport-stirrup orthoses and ankle tape in restricting eversion-inversion before and after ex-ercise. Journal of Orthopaedic and Sports Physical Therapy 13, 11-19.

Hertel, J.N., Guskiewicz, K.M., Kahler, D.M. and Perrin, D.H. (1996) Effect of lateral ankle joint anesthesia on center of balance, pos-tural sway, and joint position sense. Journal of Sport Rehabili-tation 5, 111-119.

Hewett, T.E., Myer, G.D., Ford, K.R., Heidt, R.S., Colosimo, A.J., Mclean, S.G., van den Bogert, A.J., Paterno, M.V. and Succop, P. (2005) Biomechanical measures of neuromuscular control and valgus loading of the knee predict anterior cruciate ligament injury risk in female athletes. American Journal of Sports Medi-cine 33, 492-501.

Hopkins, W.G. (2000) Measures of reliability in sports medicine and science. Sports medicine 30, 1-15.

Hopper, D.M., McNair, P. and Elliott, C. (1999) Landing in netball: effects of taping and bracing the ankle. British Journal of Sports Medicine 33, 409-413.

Hume, P.A. and Gerrard, D.F. (1998) Effectiveness of external ankle support. Sports Medicine 25, 285-312.

Jones, D., Louw, Q. and Grimmer, K. (2000) Recreational and sporting injury to the adolescent knee and ankle: prevalence and causes. Australian Journal of Physiotherapy 46, 179-188.

Kinzey, S.J., Ingersoll, C.K. and Knight, K.L. (1997) The effects of selected ankle appliances on postural control. Journal of Ath-letic Training 32, 300-303.

Leaf, J.R., Keating, J.L. and Kolt, G.S. (2003) Injury in the Australian sport of callisthenics: a prospective study. Australian Journal of Physiotherapy 49, 123-130.

Louw, Q., Grimmer, K. and Vaughan, C.L. (2006) Biomechanical outcomes of a knee neuromuscular exercise programme among adolescent basketball players: a pilot study. Physical Therapy in Sport 7, 65-73.

Mackean, L.C., Bell, G. and Burnham, R.S. (1995) Prophylactic ankle bracing vs taping: effects on functional performance in female basketball players. Journal of Orthopaedic and Sports Physical Therapy 22, 77-81.

Macpherson, K., Sitler, M., Kimura, I. and Horodyski, M. (1995) Effects of a semirigid and softshell prophylactic ankle stabilizer on se-lected performance tests among high school football players. Journal of Orthopaedic and Sports Physical Therapy 21, 147-152.

McCaw, S.T. and Cerullo, J.F. (1999) Prophylactic ankle stabilizers affect ankle joint kinematics during drop landings. Medicine and Science in Sports and Exercise 31, 702-707.

Page 275: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

Ankle taping, balance and jump

356

Osborne, M.D. and Rizzo, T.D. (2003) Prevention and treatment of ankle sprain in athletes. Sports Medicine 33, 1145-1150.

Özgüven, H. and Berme, N. (1988) An experimental and analytical study of impact forces during human jumping. Journal of Bio-mechanics 21, 1061-1066.

Paris, D.L. (1992) The effects of the Swede-o, new cross, and McDavid ankle braces and adhesive ankle taping on speed, balance, agil-ity and vertical jump. Journal of Athletic Training 27, 253-255.

Riemann, B.L., Schmitz, R.J., Gale, M.G. and McCaw, S.T. (2002) Effect of ankle taping and bracing on vertical ground reaction forces during drop landings before and after treadmill jogging. Journal of Orthopaedic and Sports Physical Therapy 32, 628-635.

Robbins, S. and Waked, E. (1998) Factors associated with ankle injuries. Sports Medicine 25, 63-72.

Thacker, S., Stroup, D., Branche, C., Gilchrist, J., Goodman, R. and Weitman, E. (1999) The prevention of ankle sprains in sports. American Journal of Sports Medicine 27, 753-760.

Verbrugge, J.D. (1996) The effects of semirigid air-stirrup bracing vs adhesive ankle taping on motor performance. Journal of Or-thopaedic and Sports Physical Therapy 23, 320-325.

Wilkerson, G.B. (1991) Comparative biomechanical effects of the standard method of ankle taping and a taping method designed to enhance subtalar stability. American Journal of Sports Medicine 19, 588-595.

Key points • Ankle taping has no influence on balance perform-

ance. • Ankle taping does not impair performance during

the push-off phase of the jump. • Ankle taping could increase the risk of injury during

landings by increasing peak forces.

Javier Abián-Vicén

Faculty of Sports Sciences, University of Castilla-La Mancha, Avenida Carlos III s/n 45071 Toledo, Spain

AUTHORS BIOGRAPHY Javier ABIÁN-VICÉN Employment Research Fellow, Faculty of Sports Sciences, University of Castilla-La Mancha, Spain. Degree MSc Research interest Biomechanics, ankle taping, risk of knee injury in landings. E-mail: [email protected] Luis M. ALEGRE Employment Assistant Professor, Faculty of Sports Sciences, University of Castilla-La Mancha, Spain. Degree PhD Research interest Biomechanics, muscle mechanics. E-mail: [email protected] José M FERNÁNDEZ-RODRÍGUEZ Employment Physical Therapist, Associate Professor. School of Physiotherapy and Nursery, University of Castilla-La Mancha., Spain. Degree PT Research interest Prophylactic taping, rehabilitation. E-mail: [email protected] Amador J. LARA Employment Research Fellow, Faculty of Sports Sciences, University of Castilla-La Mancha, Spain. Degree MSc Research interest Biomechanics, strength training. E-mail: [email protected] Marta MEANA Employment Associate Professor, Department of Physical Activity and Sports, Catholic University San Antonio, Murcia, Spain. Degree PhD Research interest Biomechanics, ankle taping, training performance. E-mail: [email protected]

Xavier AGUADO Employment Professor, Faculty of Sports Sciences, University of Castilla-La Mancha, Spain. Degree PhD Research interest Biomechanics, ankle taping, injury prevention, muscle mechanics. E-mail: [email protected]

Page 276: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL
Page 277: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

October 6, 2008 Mr. Javier Abián-Vicén University of Castilla-La Mancha Faculty of Sports Sciences Avenida Carlos III s/n Toledo, Toledo 45071 Spain Paper No. FAI-2008-003281R: "Prophylactic ankle taping: elastic versus inelastic taping". Dear Mr. Abián-Vicén, We are pleased to inform you that your manuscript has been accepted for publication in Foot & Ankle International. Your contribution is greatly appreciated. Upon receipt of the signed copyright signature form, the manuscript will be sent to our production staff for placement in an upcoming issue. We will then contact you as soon as your manuscript has been assigned to a specific issue. You will also receive page proofs from the publishing office so that you can make necessary changes. Please click the link below, print a copy of our Copyright Signature Form, and fax the completed form to 410-494-0515 (Attn: Greg Matiasevich). http://fai.msubmit.net/letters/fai_copyright_form.pdf We certainly appreciate your willingness to submit this paper for peer review, as well as your cooperation in putting it into its final form. Sincerely, David B. Thordarson, M.D. Editor-in-Chief Foot & Ankle International [email protected]

Page 278: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

Title: PROPHYLACTIC ANKLE TAPING: ELASTIC VERSUS INELASTIC

TAPING

Javier Abián-Vicén, MSc, Research Fellow, Faculty of Sports Sciences, University

of Castilla-La Mancha, Spain. Contribution: the conception and design of the study,

acquisition of data, anaylsis and interpretation of data, drafting the article, final

approval of the version to be submitted.

Luis M. Alegre, PhD, Assistant Professor, Faculty of Sports Sciences, University of

Castilla-La Mancha, Spain. Contribution: analysis and interpretation of data, revising

it critically for important intellectual content, final approval of the version to be

submitted.

José M Fernández-Rodríguez, Physical Therapist, Associate Professor, School of

Physiotherapy and Nursery, University of Castilla-La Mancha. Contribution:

acquisition of data, revising it critically for important intellectual content, final

approval of the version to be submitted.

Xavier Aguado, PhD, Professor, Faculty of Sports Sciences, University of Castilla-

La Mancha, Spain. Contribution: the conception and design of the study, analysis and

interpretation of data, drafting the article, final approval of the version to be

submitted.

Correspondence:

Javier Abián-Vicén

Facultad de Ciencias del Deporte

Universidad de Castilla-La Mancha.

Campus Tecnológico Antigua Fábrica de Armas.

Avenida Carlos III S/N. 45071. Toledo (España)

Tel.: +34-925-268800 (ext. 5516) Fax: +34-925-268846

E-mail: [email protected]

Page 279: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

1

Title: Prophylactic ankle taping: elastic versus inelastic taping 1

2

3

ABSTRACT 4

Background: The ankle is one of the most injured joints in sport, and therefore it is 5

frequently protected with prophylactic ankle taping. This study aimed first, to 6

compare the mechanical fatigue of two types of prophylactic ankle taping after 30 min 7

of intense exercise, one made with elastic tape (ET) and the other with inelastic tape 8

(IT) and second, to investigate the subjects’ perception on the tape restriction and 9

comfort. 10

Materials and Methods: Twenty seven active women (mean age=20.6±4.1 years), 11

without previous ankle injuries volunteered for the study. The participants were tested 12

on three different conditions: with elastic ankle taping, with inelastic taping and 13

without taping, before and after 30 minutes of intense exercise. The ankle passive 14

ranges of movement (ROMs) were measured before and after exercise, and a 15

subjective scale on taping comfortableness and restriction was completed by the 16

subjects. 17

Results: Both types of ankle taping showed less ROM restriction after 30 min of 18

exercise in the inversion (IT=27% and ET=21%), and in the plantarflexion (IT=8% 19

and ET=6%). The IT showed more losses of restriction than the ET, with significant 20

differences in the inversion (p<0.05). The participants perceived the ET as more 21

comfortable and less restrictive. 22

Conclusion: We would recommend the use of ET as the first choice in the 23

preparation of prophylactic ankle taping because it produces the same restriction in 24

the ROM than the IT with less taping fatigue, and is perceived as more comfortable 25

and less restrictive by the users. 26

Key words: Biomechanics, Ankle injuries, Taping, Range of movement 27

Page 280: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

2

1

INTRODUCTION 2

The ankle is one of the joints in the body most prone to injury that is 3

frequently protected with prophylactic taping, especially in team sports.5,12,13,15,22 Tape 4

can be inelastic, elastic, or a mixture of both, although the most commonly used is 5

inelastic (Table 1). Despite this, no study was found to compare inelastic to elastic 6

taping on the restrictions in the range of movement (ROM) or the modifications 7

produced by the loss of restriction after exercise. This lack of studies could be due to 8

the utilization of elastic taping restricted only to therapeutic contexts.11 Nonetheless, 9

with the new fabrics, it was believed that elastic tape can be efficaciously used in 10

prophylactic ankle taping, with a greater comfort level for the user. 11

12

Most of the studies show that an ankle taping is fatigued under mechanical 13

loading, like any other fabric. Even more, as the training session or competition is 14

completed, the taping loses part of its mechanical properties, which will affect the 15

ROM restriction effectiveness.1,6,19,20,23 The ankle taping effectiveness is reduced after 16

20 min of exercise; therefore, it should be replaced or reinforced periodically.11 17

18

The purpose of this study was twofold. First, to compare the mechanical 19

fatigue of two types of prophylactic ankle taping techniques (elastic versus inelastic), 20

used to limit inversion and plantarflexion after 30 minutes of intense exercise. 21

Second, to study subjects’ perception of tape restriction and comfort and its relation to 22

ROM restrictions for each type of tape. 23

24

METHODS 25

Twenty seven young women volunteered for the study (Age = 20.6 ± 4.1 26

years; Body mass = 58.45 ± 6.95 kg; Height = 164.3 ± 6.2 cm). The participants gave 27

Page 281: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

3

their informed written consent to participate in the study. The experiment was 1

conducted based on the guidelines of the American Physiological Society and the 2

study protocol was approved by the local Institutional Review Board. All the subjects 3

were physically active (at least two days/week), but none was engaged in any type of 4

structured physical training. None of them used ortheses or had lower limb injuries in 5

the last two years. Through physical examination, an experienced physical therapist 6

confirmed that the participants had not suffered a ligament injury that led to joint 7

instability. The subjects performed all the tests with indoor court shoes with similar 8

characteristics. 9

10

All subjects underwent a familiarization session, after which they attended 11

three experimental sessions in the same week: without taping (NT), with inelastic 12

taping (IT), and with elastic taping (ET). Testing order was randomized to control for 13

possible treatment order effects. Two different types of taping (one with IT and the 14

other with ET) were done on both ankles, with prewrap around the level of both 15

malleoli (Cramer. BSN Medical. Vibraye, France). The ankle taping was designed to 16

limit inversion and plantarflexion. 17

18

The IT (Strappal. BSN medical. Vibraye, France) was adapted from the one 19

proposed by Neiger,21 with two anchors applied to the skin according to the subjects’ 20

body dimensions. The inferior adhesive anchor was applied over the metatarsal head, 21

and the upper anchor was applied 36% proximal from the lateral malleolus to the 22

fibular head. Eight active strips limited ankle inversion and plantarflexion, and from 23

13 to 17 strip locks were utilized, depending on the size of the lower limb (Figure 1). 24

25

For the ET (Tensoplast Sport. BSN Medical. Vibraye, France) designed 26

according to Neiger,21 two anchors, standardized to the subjects’ body dimensions, 27

Page 282: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

4

were also utilized: inferior anchor was applied over the metatarsal heads, and the 1

upper anchor, 82% proximal from the lateral malleolus to the fibular head. Six active 2

strips, which were tighten according to the size of the lower limb, limited inversion 3

and plantarflexion (Figure 2). 4

5

The design of the two types of ankle taping was slightly different. 6

Nonetheless, the resultant vector of the active strips was similar in both designs, and 7

the level of restriction preexercise was also similar in all the ROMs analyzed (see 8

results). We aimed to compare two different types of ankle taping (tape + taping 9

design) rather than merely compare the mechanical characteristics of two different 10

types of fabric. The elastic and inelastic ankle taping were those usually utilized by 11

physical therapists, and they are done with different tapes and designs. 12

13

To analyze the changes produced in the ROM by the taping fatigue, subjects 14

carried out a 30-min exercise session conducted by a researcher, with the following 15

protocols: 16

- Eight-minute warm-up: 5 min of light jogging followed by stretching 17

and several submaximal and maximal jumps. 18

- Two sets of six maximal jumps: first of counter movement jumps 19

(CMJ, vertical jump with hands on hips) and the second set of 20

Abalakov jumps (vertical jump with arm swing), with 2-min and 30 s 21

rest between sets and repetitions, respectively. 22

- Two sets of six landings, with the aim of performing them as soft as 23

possible: the first set from a landing height of 0.30 m, and the second 24

set from 0.75 m, with 2-min and 30 s rest between sets and repetitions, 25

respectively. 26

27

Page 283: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

5

The ROM was measured by an experienced physical therapist with a manual 1

goniometer (Alimed Inc, Dedham MA) to test the taping restriction and its possible 2

fatigue. ROM measurements of maximal passive static dorsiflexion, plantarflexion, 3

inversion, and eversion were performed in the right ankle with the subject lying prone 4

on a couch, following the metodology utilized in previous studies.19,20,24 The term 5

“inversion” was defined as the one axis movement in the subtalar joint, which leads to 6

push with the lateral side of the foot against the ground. Range of movement 7

measurements were carried out in the resting condition, before and after exercise in 8

the three test sessions (NT, IT, and ET), and without the ankle taping, after the two 9

experimental conditions (IT and ET), (Figure 3). In the present study, restriction has 10

been defined as the differences between preexercise measurements without taping 11

versus preexercise measurements with taping and taping fatigue as the differences 12

between preexercise measurements with taping versus postexercise measurements 13

with taping. 14

15

The reliability of the ROM was assessed with the intraclass correlation 16

coefficient (ICC) and the typical error, from three measurements of each variable16. In 17

a pilot study, carried out with 13 subjects, the ICCs were high for all the variables 18

(0.89-0.98). Typical errors in the dorsiflexion, plantarflexion, inversion and eversion 19

were 0.85 degrees, 0.96 degrees, 0.87 degrees and 0.85 degrees, respectively. Typical 20

error, expressed as coefficient of variation12 for each variable was: dorsiflexion = 21

6.7%, plantarflexion = 1.6%, inversion = 3.5% and eversion = 10.6%. 22

23

A day after completing all the tests, the subjects ranked the degree of taping 24

restriction and level of comfort using a scale from zero (minimum) to ten (maximum). 25

26

Page 284: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

6

The data were analyzed using the software package Statistica for Windows (v. 1

7.0, StatSoft, Oklahoma, USA). The experimental situations (NT, IT, ET) and the 2

time of the measurements were considered as independent variables. Range of 3

movements (right ankle dorsiflexion, plantarflexion, inversion, and eversion) were 4

considered as dependent variables. A two factor ANOVA (three taping conditions × 5

four moments of measurement) was utilized to compare the effects of exercise on the 6

different taping conditions, and the possible differences between the three taping 7

conditions at each moment. The Scheffé procedure was used for post hoc analysis 8

where necessary. Significance was set at P < 0.05. 9

10

The minimal number of subjects required with a power of 0.9 and a level of 11

significance α of 0.05 was calculated to be 14, considering the IT fatigue in the ankle 12

inversion. The statistical power with the sample of the present study (n = 27) was 13

0.99, with a bilateral α error of 0.05. 14

15

RESULTS 16

There were no significant differences between the IT and ET in any of the 17

situations, and between the pre- and post-exercise without the ankle taping, except for 18

the plantarflexion ROM (p < 0.05) (Table 2). 19

20

Both types of taping produced significant ROM restrictions in the ankle 21

plantarflexion and inversion (p < 0.001), while there were no significant ROM 22

restrictions in the dorsiflexion and eversion movements. From the measurements after 23

exercise, with both types of taping, there were significant increases in the 24

plantarflexion (IT = 4.70 degrees, p < 0.05; ET = 3.70 degrees, p < 0.001) and in the 25

inversion ROMs (IT = 5.70 degrees, p < 0.05; ET = 4.37 degrees, p < 0.001) (Table 26

3). The IT was more fatigued than the ET in the inversion movement (p < 0.05). The 27

Page 285: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

7

ET showed more fatigue in the plantarflexion, although this difference did not reach 1

statistical significance (p = 0.25) (Figure 4). In the measurements without taping, 2

before and after the IT and ET conditions, there were only significant increases in the 3

plantarflexion ROM (p < 0.01). 4

5

The scale on comfort level and taping restriction showed that the subjects 6

considered the ET as more comfortable and less restrictive than the IT (IT = 5.10 and 7

ET = 7.76; IT = 7.06 and ET = 3.70, p < 0.001, comfort level and restriction, 8

respectively) (Figure 5). 9

10

DISCUSSION 11

Both types of ankle taping showed less ROM restriction after 30 min of 12

exercise in the inversion (IT = 27% and ET = 21%) and in the plantarflexion (IT = 8% 13

and ET = 6%). Earlier, similar results have been previously reported with 14

IT,1,6,8,18,19,26 but so far, and to the best of our knowledge this is the first study, which 15

has found a similar behavior with elastic ankle taping. The IT showed more losses of 16

restriction than the ET, with significant differences in the ankle inversion (p < 0.05) 17

and no significant differences in the plantarflexion (p = 0.25). This could be due to the 18

different mechanical behavior of the inelastic taping, which shows a sudden 19

restriction, in a different way than that of an elastic one, with a gradual restriction that 20

increases toward the mechanical threshold. 21

22

There were no differences in the ROM restrictions before exercise in the two 23

types of taping, although the participants perceived the ET as more comfortable and 24

less restrictive than the inelastic one. Even in the study of Gross et al.,7 there was no 25

concordance found between the subjects’ perceptions and the ROM measurements 26

while comparing an ankle orthosis and a preventive IT. The orthosis utilized by Gross 27

Page 286: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

8

et al. and the ET used in this study were made of a more compliant material, 1

compared to the IT, and showed a more gradual mechanical threshold with the same 2

ROM restriction, which could be the reason that the elastic braces and taping were 3

perceived as more comfortable and less restrictive by the subjects of both studies. 4

5

Both types of taping were effective in the restriction of ankle inversion (IT = 6

41% and ET = 42%) and plantarflexion (IT = 15% and ET = 11%), because the 7

combination of both movements is associated with the most usual mechanism of ankle 8

sprain; nonetheless, neither ankle taping techniques had an influence on dorsiflexion 9

or eversion. The selective restriction only in given movements are important in sport, 10

to minimize the possible influence of the ankle taping in sport performance. Earlier 11

studies have reported similar results on ankle ROM restriction with IT.4,6,8,26 12

13

The increase found in the ankle plantarflexion ROM in the NT condition after 14

exercise was probably caused by the warming of the different ankle structures. From 15

our point if view, this ROM increase only appeared in the plantarflexion because the 16

exercise tasks consisted of jumps and landings, movements that are mainly produced 17

in the sagittal plane. If the exercise session had included running exercises with sharp 18

changes of direction, the lateral ROMs of the subtalar joint would have been also 19

affected. Alt et al.1 found increases in the skin temperature of 3.8ºC after 30 min of 20

exercise without taping, and from 5.7 to 5.9°C with different types of elastic taping. 21

these temperature increases could explain, at least in part, the ROM increases found in 22

the NT condition after exercise and in the ET and IT conditions after exercise with the 23

ankle taping removed. The exercise session carried in this study was shorter than that 24

performed by the subjects of Alt et al.,1 however, all the tasks were maximal. 25

26

Page 287: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

9

In conclusion, the use of ET is recommended as the first choice in the 1

preparation of prophylactic ankle taping because it produces the same restriction in 2

the ROM than the inelastic one with less fatigue, and is perceived as more 3

comfortable and less restrictive by the users. 4

5

REFERENCES 6

1. Alt, W; Lohrer, H; Gollhofer, A: Functional properties of adhesive ankle 7

taping: Neuromuscular and mechanical effects before and after exercise. Foot 8

Ankle Int. 20:238-245, 1999. 9

2. Bruns, J; Scherlitz, J; Luessenhop, S: The stabilizing effect of orthotic 10

devices on plantar flexion dorsal extension and horizontal rotation of the ankle 11

joint. Int J Sports Med. 17:614-618, 1996. 12

3. De Clercq, LR: Ankle bracing in running: the effect of a push type medium 13

ankle brace upon movements of the foot and ankle during the stance phase. Int 14

J Sports Med. 18:222-228, 1997. 15

4. Gehlsen, GM; Pearson, D; Bahamonde, R: Ankle joint strength, total work, 16

and ROM: comparison between prophylactic devices. J Athl Train. 26:62-65, 17

1991. 18

5. Grabbett, TJ: Incidence of injury in amateur rugby league sevens. Br J Sports 19

Med. 36:23-26, 2002. 20

6. Greene, TA; Hillman, SK: Comparison of support provided by a semirigid 21

orthosis and adhesive ankle taping before, during, and after exercise. Am J 22

Sports Med. 18:498-506, 1990. 23

7. Gross, MT; Batten, AM; Lamm, AL; Lorren, JL; Stevens, JJ; Davis, JM; 24

Wilkerson, GB: Comparison of donjoy ankle ligament protector and subtalar 25

sling angle taping in restricting foot and ankle motion before and after 26

exercise. J Orthop Sports Phys Ther. 19:33-41, 1994. 27

Page 288: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

10

8. Gross, MT; Lapp, AK; Davis, M: Comparison of Swede-O-universal ankle 1

support and aircast sport-stirrup orthoses and ankle tape in restricting 2

eversion-inversion before and after exercise. J Orthop Sports Phys Ther. 3

13:11-19, 1991. 4

9. Hopkins, WG: Measures of reliability in sports medicine and science. Sports 5

med. 30:1-15, 2000. 6

10. Hubbard, T; Kaminski, T: Kinesthesia is not affected by functional ankle 7

instability status. J Athl Train. 37:481-486, 2002. 8

11. Hume, PA; Gerrard, DF: Effectiveness of external ankle support. Bracing 9

and taping in rugby union. Sports Med. 25:285-312, 1998. 10

12. Jones, D; Louw, Q; Grimmer, K: Recreational and sporting injury to the 11

adolescent knee and ankle: prevalence and causes. Aust J Physiother. 46:179-12

188, 2000. 13

13. Junge, A; Dvorak, J: Soccer Injuries. Sports Med. 34:929-938, 2004. 14

14. Kaminski, TW; Gerlach, TM: The effect of tape and neoprene ankle 15

supports on ankle joint position sense. Phys Ther Sport. 2:132-140, 2001. 16

15. Leaf, JR; Keating, JL; Kolt, GS: Injury in the Australian sport of 17

callisthenics: a prospective study. Aust J Physiother. 49: 123-130, 2003. 18

16. Lindley, TR; Kernozek, TW: Taping and semirigid bracing may not affect 19

ankle funnctional range of motion. J Athl Train. 30: 109-112, 1995. 20

17. Lohrer, H; Wilfried, MD; Gollhofer, A: Neuromuscular properties and 21

functional aspects of taped ankles. Am J Sports Med. 27:69-75, 1999. 22

18. Martin, N, Harter, RA: Comparison of inversion restraint provided by ankle 23

prophylactic devices before and after exercise. J Athl Train. 1993; 28: 324-24

329. 25

19. Meana, M; Alegre, LM; Elvira, JLL; Aguado, X: Kinematics of ankle 26

taping after a training session. Int J Sports Med. 29:70-76, 2008. 27

Page 289: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

11

20. Metcalfe, RC; Schlabach, GA; Looney, MA; Renehan, EJ: A comparison 1

of moleskin tape, linen tape, and lace-un brace on joint restriction and 2

movement performance. J Athl Train. 32:136-140, 1997. 3

21. Neiger, H: Los vendajes funcionales, aplicaciones en traumatología del 4

deporte y en reeducación, Barcelona, Masson, 1990. 5

22. Osborne, MD; Rizzo, TD: Prevention and treatment of ankle sprain in 6

athletes. Sports Med. 33:1145-1150, 2003. 7

23. Paris, DL; Vardaxis, V; Kikkaliaris, J: Ankle ranges of motion during 8

extended activity periods while taped and braced. J Athl Train. 30:223-228, 9

1995. 10

24. Root, ML; Orien, WP; Weed, JH; Hughes, RJ: Biomechanical examination 11

of the foot, Los Angeles, Clinical Biomechanics Corporation, 1971. 12

25. Shapiro, MS; Kabo, M; Mitchell, PW; Loren, G; Tsenter, M: Ankle sprain 13

prohylaxis: an analysis of the stabilizing effects of braces and tape. Am J 14

Sports Med. 22:78-82, 1994. 15

26. Wilkerson, GB: Comparative biomechanical effects of the standard method 16

of ankle taping and a taping method designed to enhace subtalar stability. Am 17

J Sports Med. 19:588-595, 1991. 18

19

TABLE AND FIGURE LEGENDS 20

Table 1: Studies on the restriction in the range of movement and taping fatigue in 21

prophylactic ankle taping (M = Males; F = Females; ROM = Range of Movement). 22

23

Table 2: Ranges of movement of dorsiflexion, plantarflexion, inversion, and eversion. 24

(* = Significant differences between pre- and post-exercise, p < 0.05). 25

26

Page 290: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

12

Table 3: Differences in dorsiflexion, plantarflexion, inversion, and eversion. The 1

situations compared were (1) restriction: pre-exercise measurement without taping 2

versus post-exercise measurement with taping; (2) taping fatigue: pre-exercise 3

measurement with taping vs. post-exercise measurement with taping; (3) pre-post: 4

pre-exercise measurement without taping versus post-exercise measurement without 5

taping (* = p < 0.05; ** = p < 0.01; p < 0.001). 6

7

Figure 1: Preparation of the prophylactic ankle taping with inelastic tape (2 = 8

anchors; 3, 4, and 5 = active strips; 6 = strip lock). 9

10

Figure 2: Preparation of the prophylactic ankle taping with elastic tape (2 = anchors; 11

3, 4, and 5 = active strips; 6 = strip lock). 12

13

Figure 3: Experimental design. Range of movement (ROM) measurements thorough 14

the study. 15

16

Figure 4: Loss of restriction in the two types of ankle taping (* = p < 0.05). 17

18

Figure 5: Subjective subject’s perception on the ankle taping utilization (*** = p < 19

0.001). 20

21

22

23

24

25

26

27

Page 291: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

13

FIGURE 1 1

2

FIGURE 2 3

4

FIGURE 3 5

6

7

Page 292: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

14

FIGURE 4 1

2

FIGURE 5 3

4

5

6

7

8

Page 293: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

15

TABLE 1 1

TYPE OF FABRIC STUDY n GENDER AGE (YEARS) SUBJECTS' CHARACTERISTICS MEASUREMENT

Alt et al. (1) 12 5 F, 7 M F (22.4), M (24.1) Healthy ROM-Restriction

Bruns et al. (2) 20 -- -- Cadavers without injuries ROM-Restriction

Greene and Hillman (6) 7 F 18-21 Healthy ROM-Fatigue

Gross et al. (8) 16 8 F, 8 M F (26.0 ± 3.8), M (26.1 ± 4.7) Healthy ROM-Fatigue

Hubbard and Kaminski (10) 16 8 F, 8 M 21.6 ± 1.7 Unstable ankles ROM-Restriction

Kaminski and Gerlach (14) 20 F 20.8 ± 2.7 Healthy ROM-Restriction

Lindley and Kernozek (16) 11 M 21.1 ± 1.7 Healthy ROM-Restriction

Lohrer et al. (17) 40 22 F, 18 M 23.6 Healthy ROM-Fatigue

Martin and Harter (18) 10 5 F, 5 M 23.4 ± 2.5 Healthy ROM-Fatigue

Meana et al. (19) 15 M 23.4 ± 1.9 Healthy ROM-Fatigue

Metcalfe et al. (20) 10 F 26.5 ± 3.69 Healthy ROM-Fatigue

Paris et al. (23) 30 M 22.0 ± 3.3 Healthy ROM-Fatigue

Shapiro et al. (25) 5 M 20-65 Cadavers ROM-Restriction

De Clercq (3) 7 M 23.0 ± 1.3 Healthy ROM-Restriction

Gross et al. (7) 16 8 F, 8 M F (22 ± 2), M (27 ± 7) Healthy ROM-Fatigue

Wilkerson (26) 30 M -- Healthy ROM-Fatigue

Inelastic

Mixture of elastic and inelastic

2

TABLE 2 3

Familiarization Pre-exercise Post-exercise Elastic taping Inelastic taping Elastic taping Inelastic taping Elastic taping Inelastic taping

Dorsiflexion (degrees) 17.89 ± 7.43 18.40 ± 6.96 18.89 ± 6.31 16.37 ± 7.21 15.93 ± 6.36 17.11 ± 7.69 17.33 ± 6.75 18.59 ± 6.95 18.89 ± 6.66

Plantarflexion (degrees) 65.44 ± 8.22 67.59 ± 7.80 69.22 ± 8.58 (*) 58.15 ± 7.44 55.93 ± 6.98 61.85 ± 6.72 60.63 ± 7.02 68.59 ± 6.92 68.74 ± 8.34

Inversion (degrees) 36.00 ± 4.57 36.67 ± 4.08 37.48 ± 4.69 20.96 ± 5.12 21.33 ± 3.76 25.33 ± 5.43 27.04 ± 4.62 38.44 ± 3.69 37.85 ± 3.42

Eversion (degrees) 13.93 ± 2.25 14.15 ± 1.99 14.22 ± 1.87 13.48 ± 1.81 13.48 ± 1.63 14.07 ± 1.80 13.26 ± 1.58 14.66 ± 2.15 13.93 ± 1.88

WITHOUT TAPING PRE-EXERCISE WITH TAPING POST-EXERCISE WITH TAPING POST-EXERCISE WITHOUT TAPING

4

TABLE 3 5

Inelastic Elastic Inelastic Elastic Inelastic Elastic Inelastic Elastic

1.- Restriction -1.96 -1.52 -9.52 (***) -7.30 (***) -14.66 (***) -15.04 (***) -0.44 -0.44

2.- Taping fatigue 1.41 0.74 4.70 (*) 3.70 (***) 5.70 (*) 4.37 (***) 0.22 0.59

3.- Pre-Post 4.44 0.70 1.28 (**) 4.04 (**) 1.83 2.44 0.93 0.74

DORSIFLEXION (degrees) PLANTARFLEXION (degrees) INVERSION (degrees) EVERSION (degrees)

6

Page 294: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL
Page 295: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

AAnneexxoo 44:: PPóósstteerrss Abián J, Alegre LM, Lara AJ, Aguado X. (2006). Kinetic differences between men

and women in six landing situations. 11th Annual Congress of the European

College of Sport Science. Lausanne (Suiza).

Abián J, Alegre LM, Lara AJ, Rubio JA, Aguado X. (2007). Differences between

men and woman in landings from jump tests. 12th Annual Congress of the

European College of Sport Science. Jyväskylä (Finlandia).

Abián J, Alegre LM, Fernández JM, Aguado X. (2007). Kinetic analysis of the range

of movement with two types of prophylactic ankle taping: inelastic vs elastic

taping. 12th Annual Congress of the European College of Sport Science.

Jyväskylä (Finlandia).

Page 296: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL
Page 297: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

Javier Abián, Luis M. Alegre, Amador J. Lara and Xavier Aguado.

Biomechanics Laboratory. Faculty of Sports Sciences, Toledo. Spain.

KINETIC DIFFERENCES BETWEEN MEN AND WOMENIN SIX LANDING SITUATIONS

KINETIC DIFFERENCES BETWEEN MEN AND WOMENIN SIX LANDING SITUATIONS

Universidad deCastilla-La Mancha

11th Annual Congressof the ECSS

The subjects who performed the highest jumps in

the DJ and CMJ tests, that is, with greater explosive

force, showed lower values of F2 in the landings from

0.75 m, while in the landings from the ground it would

be more relevant a good landing technique. The use of

the upper extremities during the landing reduced the

value of F2. A proper utilization of the upper limbs

during a landing is not always possible, but can reduce

the impact forces, and therefore, the risk of injury.

The increase in the vertical ground reaction forcescould transmit greater tension to the ligaments,especially when they are more vulnerable (5). In thissense, the gender differences only appeared in the testsfrom high landing surfaces, where the women's groupappeared to be more sensitive to the landing height.Further studies should analyze kinematics andelectromyography of the landing movements,synchronized with the force-time record.

4- DISCUSSION/CONCLUSION

REFERENCES

1. Abián, J, L. M. Alegre, A. J. Lara, S. Sordo and X. Aguado.

2. Henry, J. H., B. Lareau and D. Neigut.

3. Hewett, T. E., G. D. Myer, K. R. Ford, R. S. Heidt,A. J. Colosimo, S. G. Mclean,A. J. van den Bogert, M. V. Paternoand P. Succop.

4. Özgüven, H. and N. Berme.

Pflum, M. A., K. B. Shelburne, M. R. Torry, M. J. Decker and M. G. Pandy.

6. Zazulak, B. T., P. L. Ponce, S. J. Straub, J. M. Michael, L. Avedisian and T. E. Hewett.

Capacidad de amortiguación en aterrizajes después de

ejercicio intenso. RED. 19 (3): 5-11, 2005.

The injury rate in professional basketball. Am J Sports Med. 10 (1):16-18,

1982.

Biomechanical measures of neuromuscular control and valgus loading of the knee predict anterior

cruciate ligament injury risk in female athletes.Am J Sports Med. 33:492-501, 2005.

An experimental and analytical study of impact forces during human J

Biomech

Model prediction of anterior cruciate

ligament force during drop-landings. Med Sci Sports Exerc. 36:1949-1958, 2004.

Gender comparison of hip

muscle activity during single-leg landing. J Orthop Sports Phys Ther. 35:292-299, 2005.

jumping.

. 21:1061-1066, 1988.

5.

1- INTRODUCTION

Landings are common in sport activities, and have

been reported to be one of the mechanisms of injuries

of the anterior cruciate ligament (ACL) (2,4), because

two thirds of these injuries happen during the landing

from a jump. This is particularly important among

young athletic women, because they have specific

characteristics that increase the risk of injury during

drop landings (3,6).

The greatest risk of injury to the ACL during the

landing is located in the first 25% of the total landing

time, with knee flexion from 33º to 48º, and the ACL

resists the largest strain around 0.040 s after the first

contact, moment that corresponds to the higher peak

vertical force value (F2) (Figure 1) (1,5). Some

researches have established relationships between

large F2 values and greater tension in theACL(3,5).

The aim of this study was to make comparisons

between men and women in six different types of

landings, from a kinetic point of view.

2- METHODOLOGY

Fifteen female (age 18.8 ± 1.0 years, height 164.8

cm ± 7.1, weight 60.53 kg ± 5.66) and 15 male

university students (age 22.1 ± 2.3 years, height 176.6

cm ± 6.2, weight 72.11 kg ± 6.21), all of them physically

active, volunteered for the study. The force-time data

from six different landing situations were recorded,

four of the landings from 0.75 m (without the use of the

upper extremities, with upper extremities, just before a

drop jump, after a sudden start), and two landings after

a jump from the ground: [after drop jump (DJ) and after

counter movement jump (CMJ)] (Figure 2).

Ground reaction forces were measured with a

piezoelectric Kistler force plate model 9281 CA

(Kistler, Winterthur, Switzerland), at 1000 Hz. There

were analyzed the following variables: jump height, F2

and the time elapsed from the ground contact to F2

(T2).

Figure 1: Vertical groundreaction forces (VGRF)during a landing from 0.75 m(F2 = second peak forcevalue; T2 = time from contactto the second peak forcevalue).

3- RESULTS

Taking the whole sample, there were significant

correlations (P < 0.05) between the CMJ and DJ jump

heights and F2 in the landings from 0.75 m, but not in

the landings after jumps from the ground (Figure 3).

There were only significant differences in F2 between

men and women in the landings from 0.75 m, with

greater F2 values in the women's group (P < 0.05)

(Table 1 and Figure 4).

Table 2: Means, Standard deviations and rankings of the variables studied; F2 = second peak vertical force, T2= time from the contact to the second peak vertical force value and h = jump height (WUE = landing withoutupper extremities; UE = landing with the use of upper extremities; BDJ = landing before a drop jump; ADJ =landing after a drop jump; STA = Sudden start after landing; CMJ = counter movement jump).

Figure 2: Key instants of the landing and the previous phase in the six situations analyzed (4 = first contact with theground; 5 = lowest height of the center of gravity during the landing, except in the STA test, where it matches with firstground contact out of the force plate; 6 = final position; WUE = landing without upper extremities; UE = landing withthe use of upper extremities; BDJ = landing before a drop jump; STA = sudden start after landing).

F2 T2 h

X (SD) RANKING X (SD) RANKING X (SD) RANKING

WUE 8.10 (1.42) 2 0.037 (0.006) 6 0.75

UE 7.01 (1.61) 4 0.039 (0.005) 4 0.75

BDJ 8.15 (1.77) 1 0.038 (0.007) 5 0.75

ADJ 6.50 (1.94) 5 0.047 (0.017) 3 0.29 (0.04) 1

STA 7.43 (1.58) 3 0.048 (0.007) 2 0.75

CMJ 5.26 (1.18) 6 0.055 (0.021) 1 0.27 (0.03) 2

F2 T2 h

X (SD) RANKING X (SD) RANKING X (SD) RANKING

WUE 6.14 (1.62) 3 0.042 (0.007) 5 0.75

UE 5.51 (1.50) 5 0.043 (0.007) 4 0.75

BDJ 5.73 (1.60) 4 0.042 (0.005) 5 0.75

ADJ 6.63 (2.49) 1 0.055 (0.014) 2 0.43 (0.07) 1

STA 5.48 (1.20) 6 0.056 (0.012) 1 0.75

CMJ 6.33 (2.51) 2 0.050 (0.011) 3 0.40 (0.05) 2

FEMALE

MALE

4

5

6

7

8

WUE UE BDJ ADJ STA CMJ

F2

(BW

)

Female

Male

**

*

**

**

ns

ns

Figure 4: Differences between men and women in the second peak vertical force value (F2) (* = P < 0.05, ** = P <0.01, *** = P < 0.001, WUE = landing without upper extremities; UE = landing with the use of upper extremities;BDJ = landing before a drop jump; ADJ = landing after a drop jump; STA = sudden start after landing; CMJ =counter movement jump).

WUE UE PDJ DJ SAL CMJ

WUE

UE *** (F)

PDJ * (F)

DJ * (F) * (F)

SAL

CMJ *** (F) * (F) *** (F) * (F) *** (F)

Table 2: Significant differencesfound when comparing F2 in thesix landing situations (* = P <0.05, *** = P < 0.001, F =Females, WUE = landing withoutupper extremities; UE = landingwith the use of upper extremities;BDJ = landing before a dropjump; ADJ = landing after a dropjump; STA = sudden start afterlanding; CMJ = countermovement jump).

Figure 3: Relationshipbetween CMJ jumpheight (h) and thesecond peak verticalforce value (F2) in thelanding test before adrop jump (BDJ).

The relative contribution of the upper extremities inthe landings was quantified from the difference betweenthe tests with and without the hands on the hips. The useof the upper extremities during the landing reduced thevalue of F2 by 13.46% in women and 10.26% in themen's group. In the landing situations, there weresignificant differences between tests in F2, only in thewomen's group (P < 0.05) (Table 2).

FLIGHT PHASE

WUE

UE

STA

BDJ

LANDING PHASE

1 2 3

4 5 6

Correlation between CMJ height and F2 in the BDJ test

F2 (BDJ) = 13.076 - 18.32 * h (CMJ)

r = - 0.6952; p<0.05

0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55

h (m)

2

4

6

8

10

12

14

F2

(BW

)

o Female

Male

Page 298: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

Javier Abián, Luis M. Alegre, Amador J. Lara, Jacobo A. Rubio and Xavier Aguado.

Biomechanics Laboratory. Faculty of Sports Sciences, Toledo. Spain.

DIFFERENCES BETWEEN MEN AND WOMENIN LANDINGS FROM JUMP TESTS

DIFFERENCES BETWEEN MEN AND WOMENIN LANDINGS FROM JUMP TESTS

5- DISCUSSION/CONCLUSION

The F2 values of the present study are

greater than those found by other authors who

analyzed landings from similar heights,

probably because the subjects of the present

study focused their attention on reaching the

greatest jump height rather than performing a

soft landing.

The negative correlations found between F2

and T2 showed that as F2 was delayed, its

value decreased. As explained above,

another way to decrease F2 would be to

increase the duration of the landing

movement by a greater range of movement of

the center of gravity. In fact, we found slight,

but significant correlations between F2 and Lr.

This suggests that the landing technique is

important to reduce F2 values. It also

highlights the significance of prophylactic

training of a proper landing technique in

different backgrounds.

The lower values in the peak force values

during the landing phase found in the women's

group were related to a different landing

technique and the lower landing height,

compared to the men’s group. The low

relationships between the explosive force and

the ability of achieving low force values during

the landing would point out to the significance

of landing technique.

REFERENCES

1.

2.

3.

Zelisko JA, Noble HB, Porter MA.

Zazulak BT, Ponce PL, Straub SJ, Michael JM, Avedisian L, Hewett TE.

Chappell JD, Yu B, Kirkendall DT, Garrett WE.

Comparison of men´s and women´s

professional basketball injuries.Am J Sports Med 1982; 10:297-9.

Gender comparison of hip muscle activity during single-leg landing. J Orthop

Sports Phys Ther 2005; 35: 292-9.

A comparison of knee

kinetics between male and female recreational athletes in stop-jump tasks.Am

J Sports Med 2002; 30:261-7.

1- INTRODUCTION

Jump tests are frequently used as a method

for evaluating explosive force in the lower

extremities. The subjects, researchers and

coaches tend to focus on the push-off and the

flight phases, because the purpose of the test

i s to reach the g rea tes t j ump he igh t .

Unfortunately, the landing phase is usually

neglected, although the landing movements

of jumps have been reported to be the main

cause of injury in some sports (1,2). The risk of

injury during maximal jump tests could be also

increased by a poor landing technique. In

other respect, women have shown to have a

different landing pattern than men during

sport competitions, which could explain, at

least in part, the greater risk of injury during

landings in female populations (2,3).

To analyze the gender differences in the

vert ical ground reaction forces and the

position of the center of gravity during the

landing phase of a jump test.

2- PURPOSE

3- METHODOLOGY

The push-off, flight and landing phases of

the countermovement jumps of 291 males

(age = 19.6 ± 2.8 years, body mass = 71.0 ±

8.6 kg, height = 174.9 ± 5.9 cm) and 92

females (age = 19.2 ± 2.6 years, body mass =

57.2 ± 7.1 kg, height = 164.3 ± 5.9 cm),

applicants to a Spanish faculty of sports

sciences, were analyzed with a force platform

(Figure 1). The maximal height of the center of

grav i ty (h) and peak power (PP) were

assessed during the push-off phase. During

the landing phase were analyzed the second

peak vertical force value (F2), the time

elapsed from the contact to F2 (T2) and the

vertical path of the center of gravity from the

feet contact to the lowest point of the landing

(Lr). The values of Lr were normalized to the

subject's height.

4- RESULTS

The greatest differences between men and

women were found in h (h = 25.6 ± 3.5 cm;

h = 35.5 ± 4.5 cm, P < 0.001), PP (PP =

39.9 ± 4.8 W/kg; PP = 50.2 ± 2.6 W/kg, P <

0.001) (Figure 2) and F2 (F2 = 5.89 ± 2.06

times body weight; F2 = 7.51 ± 2.38 times

body weight, P < 0.001) (Figure 3), with

greater values in the men's group. The

women's group showed a greater vertical

range of movement of the center of gravity

during the landing (Lr = 11.1 ± 2.7%; Lr

= 10.4 ± 2.4%; P < 0.05) (Figure 3). There

were significant correlations between F2 and

T2 (r = -0.63, r = -0.65 and r = -0.61)

and between F2 and Lr (r = -0.56, r = -

0.59 and r = -0.55).

women

men women

men

women

men

women men

all women men

all women

men

Figure 2: Differences between males and females in the jump height and inthe peak power during the push-off phase (*** = P< 0.001).

Figure 1: Flight phase during the counter movement jump

Figure 3: Differences between males and females in the second peakvertical force value during the landing (F2) and the vertical path of the centerof gravity (Lr) (* = P< 0.05, *** = P< 0.001).

12th Annual Congress of the ECSSJul 11-14, 2007, Jyväskylä, Finland

Page 299: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL

Javier Abián, Luis M. Alegre, Jose M. Fernández and Xavier Aguado.

Biomechanics Laboratory. Faculty of Sports Sciences, Toledo. Spain.

KINETIC ANALYSIS OF THE RANGE OF MOVEMENT WITH TWO

TYPES OF PROPHYLACTIC ANKLE TAPING: INELASTIC VS. ELASTIC TAPING

KINETIC ANALYSIS OF THE RANGE OF MOVEMENT WITH TWO

TYPES OF PROPHYLACTIC ANKLE TAPING: INELASTIC VS. ELASTIC TAPING

12th Annual Congress of the ECSSJul 11-14, 2007, Jyväskylä, Finland

5- DISCUSSION/CONCLUSION

Although there was a loss of restriction in

both types of ankle taping after exercise, this

loss was greater during the supination with the

inelastic taping (P < 0.05). This could have

been caused by the different behaviour of the

inelastic taping, with a gradual restriction that

increases towards the mechanical threshold

(3). The participants perceived the elastic

tap ing as more comfo r tab le and less

restrictive than the inelastic one, probably

because its gradual restriction behaves

similar to that showed by the different ankle

structures. From these results, we would

recommend the use of elastic taping as the

first choice when preparing prophylactic ankle

taping to limit plantar flexion and supination.

REFERENCES

1. Hume PA, Gerrard DF.

2. Gross MT, Batten AM, Lamm AL, Lorren JL, Stevens JJ, Davis JM andWilkerson GB.

3.Osborne MD and Rizzo TD.

Effectiveness of external ankle support. Sports

medicine 25: 285-312. 1998.

Comparison of donjoy ankle ligament protector and subtalar

sling angle taping in restricting foot and ankle motion before and after exercise.

Journal of Orthopaedic and Sports Physical Therapy 19: 33-41. 1994.

Prevention and treatment of ankle sprain in

athletes. Sports Medicine 33: 1145-1150. 2003.

1- INTRODUCTION

The ankle is one of the most injured joints in

sport, and therefore it is frequently protected

with prophylactic ankle taping, designed for

subjects without previous ankle injuries (1).

Prophylactic ankle taping can be made with

different types of fabric, mainly inelastic

fibres. On the other hand, ankle taping made

w i th e las t i c fab r i c i s more u t i l i sed in

therapeutic ankle taping, that is, designed for

subjects with previous injuries (2). It was

hypothesised that elastic tape could be

utilised in prophylactic ankle taping with the

same effectiveness as inelastic tape, and that

this kind of ankle taping would be more

comfortable for the users.

1.- To compare the changes in range of

movement (ROM) caused by the loss of

restriction of the ankle taping with two different

types of prophylactic ankle taping, one made

with inelastic tape (IT) (Figure 1) and the other

one with elastic tape (ET) (Figure 2) after 30

minutes of intense exercise (jump and landing

drills).

2.- To analyse the subjects' perception on

taping restriction and comfortableness, and

the relationships of this perception to the ROM

restrictions.

2- PURPOUSE

3- METHODOLOGY

Subjects:

Procedures:

Variables:

27 active young women (age =

20.6 ± 4.1 years; body mass = 58.5 ± 7.0 kg;

height = 164.3 ± 6.2 cm)

They carried out three test

sessions randomly distributed (Figure 3):

1.- without taping

2.- with IT

3.- with ET

The ankle ROMs in plantarflexion,

dorsiflexion, pronation and supination were

assessed before and af te r the tap ing

procedure, and after exercise, with and without

the ankle taping. The subjects answered in a

day apart a scale where they ranked from 0

(minimum) to 10 (maximum) the degree or

taping restriction and its comfortableness.

4- RESULTS

The ankle supination and plantar flexion were

significantly restricted with both types of taping

(IT = 40.74% and ET = 41.77%; IT = 14.54%

and ET = 11.15%; P < 0.001; percentage of

restriction in supination and plantar flexion,

respectively). After exercise, both types of

taping reduced the degree of restriction in

supination (IT = 26.74% and ET = 20.84%) and

plantar flexion (IT = 14.54% and ET = 11.15%).

The inelastic ankle taping loss more restriction

effectiveness than the elastic one (P < 0.05)

(Figure 4); furthermore, the elastic taping was

perceived by the subjects as more comfortable

(IT = 5.10 ± 1.75; ET = 7.76 ± 1.25, P < 0.001)

and less restrictive than the inelastic one (IT =

7.06 ± 1.42; ET = 3.70 ± 1.64, P < 0.001) (Figure

5).

Figure 3: Experimental design: ROM measurements thorough the study.

Figure 2: Preparation of the prophylactic taping with inelastic tape (2 = anchors;3,4 and 5 = active strips; 6 = strip lock).

Figure 4: Loss of restriction in the two types of ankle taping (* = P< 0.05).

Figure 1: Preparation of the prophylactic ankle taping with elastic tape(2 = anchors; 3,4 and 5 = active strips; 6 = strip lock).

0

5

10

15

20

25

30

35

supination plantar flexion

%o

fre

str

icti

on

inelastic taping

elastic taping*

Figure 5: Subjective subject’s perception on the ankle taping utilization(*** = P< 0.001).PRE-TESTING

- FAMILIARIZATION- ANTROPOMETRY- FOOT PRINT RECORD- ROM WITHOUT TAPING

TESTIN: RANDOM DAYS IN THE SAME WEEK

INELASTIC TAPING ELASTIC TAPING

1 2

A: PRE-EXERCISE ROM WITH TAPING

B: 30-MIN EXERCISE

C: POST-EXERCISE ROM WITH TAPING

D: POST-EXERCISE ROM WITHOUT TAPING

B: 30-MIN EXERCISE

A: PRE-EXERCISE ROM

C: POST-EXERCISE ROM

NO TAPING

0

1

2

3

4

5

6

7

8

9

10

comfortable restrictive

pe

rce

pti

on

by

the

su

bje

cts

inelastic tape

elastic tape*** ***

Page 300: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL
Page 301: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL
Page 302: BIOMECÁNICA DEL VENDAJE FUNCIONAL … · UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Didáctica de la Expresión Musical, Plástica y Corporal BIOMECÁNICA DEL VENDAJE FUNCIONAL