Aplicaciones Topograficas

116
 UNIVERSIDAD DE CANTABRIA ESCUELA TÉCNICA SUPERIOR DE INGENIEROS INDUSTRIALES Y DE TELECOMUNICACIÓN DEPARTAMENTO DE INGENIERÍA ELÉCTRICA Y ENERGÉTICA APLICACIONES TOPOGRÁFICAS GUIÓN - 1 José Ramón Aranda Sierra Dr. Ingeniero de Caminos, Canales y Puertos 2.007

Transcript of Aplicaciones Topograficas

Page 1: Aplicaciones Topograficas

5/8/2018 Aplicaciones Topograficas - slidepdf.com

http://slidepdf.com/reader/full/aplicaciones-topograficas 1/116

 

UNIVERSIDAD DE CANTABRIA

ESCUELA TÉCNICA SUPERIOR DE INGENIEROS INDUSTRIALES Y

DE TELECOMUNICACIÓN

DEPARTAMENTO DE

INGENIERÍA ELÉCTRICA Y ENERGÉTICA

APLICACIONES TOPOGRÁFICAS

GUIÓN - 1

José Ramón Aranda Sierra

Dr. Ingeniero de Caminos, Canales y Puertos

2.007

Page 2: Aplicaciones Topograficas

5/8/2018 Aplicaciones Topograficas - slidepdf.com

http://slidepdf.com/reader/full/aplicaciones-topograficas 2/116

 

 

Dedicatoria

A mis padres

A mis alumnos 

© JOSÉ RAMÓN ARANDA SIERRA

I.S.B.N.:

Depósito Legal:

Servicio de Publicaciones de la Escuela Técnica Superior de Ingenieros de Caminos, Canales y

Puertos.

Page 3: Aplicaciones Topograficas

5/8/2018 Aplicaciones Topograficas - slidepdf.com

http://slidepdf.com/reader/full/aplicaciones-topograficas 3/116

 

PROGRAMA

11 

PRACTICAS

Page 4: Aplicaciones Topograficas

5/8/2018 Aplicaciones Topograficas - slidepdf.com

http://slidepdf.com/reader/full/aplicaciones-topograficas 4/116

 

PROGRAMA

22 

1ª.- Topografía Aplicada.

2ª.- Geotecnia.

3ª.- Estructuras.4ª.- Proyectos de Ingeniería Eléctrica y Energética.

TOPOGRAFÍA APLICADA

T 1.- INTRODUCCIÓN.

1.1.- Objetivos y contenido básico: Objeto de la topografía. Cartas, mapas y planos. Escalas.

1.2.- Límites de la percepción visual.

1.3.- Levantamientos topográficos: Clasificación. Sistemas básicos de representación. Distancia geométrica y

reducida. Planos acotados. Partes de un levantamiento. Métodos topográficos. Influencia de la esfericidad

terrestre.

1.4.- Geodesia y topografía: La forma de la Tierra. Redes geodésicas. Determinación del elipsoide.

1.5.- Topografía e ingeniería: Campo de acción. Aplicaciones generales y, en particular, a la Ingeniería

Eléctrica.

APÉNDICE 1.

A1.1.- Fotografías de distintos trabajos.

T 2.- TEORÍA DE ERRORES.

2.1.- Introducción. Principales causas.

2.2.- Tipos de errores: groseros, sistemáticos y accidentales.

2.3.- Hipótesis previas.

2.4.- La media aritmética. Propiedades.

2.5.- Concepto de precisión.

2.6.- Formas usuales de error: probable, medio aritmético, máximo, medio cuadrático. Relaciones.

2.7.- Composición y transmisión de errores: introducción. Error en una suma. Error en un producto. Error de una

media. Error de la media ponderada.

APÉNDICE 2.

A2.1.- Tolerancias en Ingeniería Civil

A2.2.- Ejemplos de estadística

A2.3.- Plantillas para trabajos de campo

T 3.- INSTRUMENTOS TOPOGRÁFICOS Y ACCESORIOS. TEODOLITO.

3.1.- Elementos de los instrumentos topográficos. Objeto: medición de distancias y de ángulos.

3.2.- Elementos accesorios: Trípodes. Mecanismos de unión. Plataformas nivelantes. Tornillos de precisión.Tornillos de coincidencia.

3.3.- Niveles: Nivel de aire. Nivel esférico. Sensibilidad del nivel. Estacionamiento de un instrumento.

Page 5: Aplicaciones Topograficas

5/8/2018 Aplicaciones Topograficas - slidepdf.com

http://slidepdf.com/reader/full/aplicaciones-topograficas 5/116

 

PROGRAMA

33 

3.4.- Anteojo: Colimar. Ejes (Óptico, mecánico, colimación: Plano horizontal de colimación, Plano vertical de

colimación).

3.5.- Limbos: Ángulos (Sexagesimales. Centesimales). Nonios. Micrómetros.

3.6.- Medida de distancias: Directa (Cintas metálicas. Hilos de invar). Indirecta (Estadímetros: constantesdiastimométricas, determinación de las constantes. Miras: visuales inclinadas, lecturas de mira).

3.7.- Teodolito. Elementos constitutivos.

3.8.- Uso del teodolito: lecturas de ángulos acimutales y cenitales.

3.9.- Errores en un teodolito. Evaluación del error total en las punterías.

APÉNDICE 3.

A3.1.- Tipos de lecturas de ángulos

A3.2.- Teodolitos comerciales

A3.3.- Plantillas para trabajos de campo

T 4.- TAQUÍMETRO. DISTANCIOMETRO.

4.1.- Métodos de evaluación de distancias: Cinta (aplicaciones). Distanciómetro (fundamento, aplicación,

manejo).

4.2.- Taquímetro.

4.3.- Uso del taquímetro

4.4.- Desarrollo de la libreta.

4.5.- Cálculo del desnivel.

4.6.- Error longitudinal.APÉNDICE 4.

A4.1.- Medida de distancias

A4.2.- Catálogos de distanciómetros

A4.3.- Levantamiento de planos

T 5.- BRÚJULAS. NIVELES.

5.1.- Fundamento de la brújula: aguja magnética.

5.2.- Variación de la declinación magnética.

5.3.- Errores en una brújula.

5.4.- Niveles: fundamento.

5.5.- Errores en un nivel. Error kilométrico.

APÉNDICE 5.

A5.1.- Catálogo de brújulas

A5.2.- Catálogo de niveles

A5.3.- Aplicaciones de nivelación

T 6.- MÉTODOS TOPOGRÁFICOS. PLANIMÉTRICOS.6.1.- Agrimensura. Idea general. Método de las mediciones. Método de la descomposición en triángulos. Método

de las abscisas y ordenadas. Método de las casi perpendiculares. Método de las alineaciones.

Page 6: Aplicaciones Topograficas

5/8/2018 Aplicaciones Topograficas - slidepdf.com

http://slidepdf.com/reader/full/aplicaciones-topograficas 6/116

 

PROGRAMA

44 

6.2.- Coordenadas. Coordenadas cartesianas. Coordenadas generales y parciales. Convergencia de meridianos.

Cálculo de ángulos acimutales y distancias.

6.3.- Método de Radiación. Orientación de un instrumento. Desorientación de una vuelta de horizonte. Ventajas

e inconvenientes del método. Distancias máximas de radiación.6.4.- Método Itinerario o poligonal. Diversas clases de itinerarios. Itinerario con goniómetro e itinerario con

brújula. Influencia del error angular en los itinerarios (goniómetro, brújula). Comparación de los errores

transversales de los itinerarios con goniómetro y brújula. Error lineal. Error total. Error de cierre. Desarrollo

gráfico y cálculo de los itinerarios.

6.5.- Método de intersección. Fundamento de la intersección directa. Elipse de tolerancia. Error máximo.

Longitud máxima de las visuales. Intersección gráfica. Cálculo de coordenadas. Fundamento de la intersección

inversa.

APÉNDICE 6.

A6.1.-Ejemplos de bases de replanteo

A6.2.- Señalización

A6.3.- Planímetros

T 7.- MÉTODOS ALTIMÉTRICOS.

7.1.- Superficies de nivel. Cotas, altitudes y desniveles. Corrección por esfericidad. Corrección por refracción.

Corrección conjunta de la esfericidad y refracción. Clasificación de los métodos altimétricos.

7.2.- Nivelaciones geométricas: Nivelación simple (Métodos punto medio, punto extremo, estaciones recíprocas,

equidistantes, estaciones exteriores). Nivelación compuesta. Error de cierre. Error kilométrico.7.3.- Nivelaciones trigonométricas: Nivelación simple. Error por falta de verticalidad de la mira. Error de cierre.

Error kilométrico.

7.4.- Nivelaciones barométricas.

T 8.- LEVANTAMIENTOS PLANIMÉTRICOS.

8.1.- Redes del levantamiento planimétrico. Triangulación.

8.2.- Cálculo de la triangulación.

8.3.- La red topográfica o intermedia.

8.4.- La red de detalle o relleno.

T 9.- LEVANTAMIENTO ALTIMÉTRICO.

9.1.- Relieve del terreno.

9.2.- Redes del levantamiento altimétrico.

9.3.- Dibujo del plano.

T 10.- LEVANTAMIENTO TAQUIMÉTRICO.

10.1.- Fundamento.10.2.- Fórmulas taquimétricas.

10.3.- Enlaces de estaciones: método directo, método indirecto, método mixto.

Page 7: Aplicaciones Topograficas

5/8/2018 Aplicaciones Topograficas - slidepdf.com

http://slidepdf.com/reader/full/aplicaciones-topograficas 7/116

 

PROGRAMA

55 

10.4.- Trabajos de campo.

10.5.- Trabajos de gabinete.

APÉNDICE 10.

A10.1.- Movimiento de tierrasA10.2.- Programas de ordenador

T 11.- FOTOGRAMETRÍA: Definición y alcance.

11.1.- Definición.

11.2.- Ventajas de la fotogrametría como fuente de información.

11.3.- Principios fundamentales de la fotogrametría.

11.4.- Restitución.

11.5.- Aplicaciones: topográficas, no topográficas.

APÉNDICE 11.

A11.1.- Estereoscopia

A11.2.- Teledetección

A11.3.- Fotogrametría en explotaciones subterráneas

T 12.- CARTOGRAFÍA.

12.1.- Lectura de mapas, planos y fotointerpretación.

12.2.- Cartografía más usual: Mapa topográfico Nacional del Instituto Geográfico Nacional (1/50.000;

1/25.000). Mapa Militar del Servicio Geográfico del Ejercito (1/50.000). Fotografías aéreas 1/5.000, 1/2.000.Cartografía regional a 1/5.000. Cartografía local 1/2.000, 1/1.000, 1/500.

12.3.- Explotación de la información cartográfica: Altimetría y pendientes del relieve, red hidrográfica, perfiles

longitudinales, perfiles transversales.

12.4.- Trabajos topográficos.

APÉNDICE 12.

A12.1.- Leyenda de símbolos topográficos

A12.2.- Diversos tipos de planos

T 13.- ELECCIÓN DE MÉTODOS E INSTRUMENTOS EN LOS LEVANTAMIENTOS

13.1.- Supuesto real

13.2.- Distancia máxima de radiación

13.3.- Limitación en los itinerarios con brújula

13.4.- Limitación en los itinerarios con taquímetro

13.5.- Características de la triangulación

13.6.- Nivelación por alturas

13.7.- Recapitulación final de errores. Tolerancias.

T 14.- PRESUPUESTO DE TRABAJOS TOPOGRÁFICOS

14.1.- Dificultad para calcular el presupuesto

Page 8: Aplicaciones Topograficas

5/8/2018 Aplicaciones Topograficas - slidepdf.com

http://slidepdf.com/reader/full/aplicaciones-topograficas 8/116

 

PROGRAMA

66 

14.2.- Trabajos necesarios y rendimientos medios

14.3.- Ejemplo

14.4.- Presupuesto para los trabajos de campo

14.5.- Organización de los trabajos de gabinete14.6.- Trabajos de gabinete

14.7.- Presupuesto para los trabajos de gabinete

14.8.- Presupuesto total

APÉNDICE 14.

A14.1.- Tarifas de alquiler de equipos topográficos

T 15.- PETICIÓN DE OFERTA DE TRABAJOS TOPOGRÁFICOS

15.1.- Petición de oferta

15.2.- Petición de oferta para un trabajo topográfico

15.3.- Ejemplo

APÉNDICE 15.

A15.1.- Petición de oferta de un trabajo topográfico

A15.2.- Oferta de un trabajo topográfico

Page 9: Aplicaciones Topograficas

5/8/2018 Aplicaciones Topograficas - slidepdf.com

http://slidepdf.com/reader/full/aplicaciones-topograficas 9/116

 

PROGRAMA

77 

NOCIONES DE GEOTECNIA

T 16.- GEOTECNIA: CIMENTACIONES. TIPOLOGÍAS.

16.1.- Información geológica del terreno. Defectos subterráneos.16.2.- Diferencias entre los tipos de suelo.

16.3.- Proyecto de cimentaciones: definición, condiciones satisfactorias, situación y profundidad, estructuras

colindantes, erosiones y socavación, nivel freático, limitación de asientos.

16.4.- Cimentaciones superficiales. Presiones admisibles. Determinación de la carga de hundimiento de un

suelo. Zapatas: Normativa Tecnológica de Edificación.

16.5.- Asientos de zapatas.

16.6.- Cimentaciones profundas. Pilotes: Normativa Tecnológica de Edificación.

T 17.- APLICACIONES. ESTUDIO DE LAS ZAPATAS DE HORMIGÓN.

17.1.- Cargas transmitidas a la zapata. Axil, Cortante, Momento Flector.

17.2.- Dimensionamiento de una zapata aislada.

17.3.- Utilización de ábacos de cálculo.

NOCIONES DE ESTRUCTURAS

T 18.- ESTRUCTURAS ARTICULADAS PLANAS.

18.1.- Definición.18.2.- Estructura isostática. Estructura hiperestática

18.3.- Métodos tradicionales de cálculo de esfuerzos. Método de Cremona.

18.4.- Movimientos de los nudos de una estructura articulada.

18.5.- Método de Williot.

18.6.- Resolución de desplazamientos y esfuerzos en estructuras articuladas planas mediante el ordenador.

T 19.- ESTRUCTURAS RETICULADAS PLANAS.

19.1.- Definición.

19.2.- Estructura isostática. Estructura hiperestática

19.3.- Métodos tradicionales de cálculo de esfuerzos. Método de Cross.

T 20.- DIMENSIONAMIENTO DE SECCIONES: ACERO Y HORMIGÓN.

20.1.- Esfuerzos en una sección de un elemento estructural.

20.2.- Metodología en elementos de acero. Manejo de prontuarios.

20.3.- Norma Tecnológica de Hormigón. EH-91. Hormigón en masa. Hormigón armado.

20.4.- Armadura de un elemento de hormigón armado.

T 21.- PROGRAMA DE CALCULO POR ORDENADOR. MANEJO DE TABLAS.

21.1.- Manejo de programas de cálculo.

Page 10: Aplicaciones Topograficas

5/8/2018 Aplicaciones Topograficas - slidepdf.com

http://slidepdf.com/reader/full/aplicaciones-topograficas 10/116

 

PROGRAMA

88 

21.2.- Bibliografía de prontuarios y tablas.

PROYECTOS DE INGENIERÍA ELÉCTRICA Y ENERGÉTICA

T 22.- PROYECTOS DE INGENIERÍA ELÉCTRICA.

22.1.- Atribuciones del Ingeniero Técnico Industrial de la especialidad Electricidad, sección Centrales y Redes.

22.2.- Proyectos tipo de Electrificación Rural: Líneas, Centros de transformación y Subestaciones.

22.3.- Instalaciones energéticas.

22.4.- Documentos de un proyecto.

22.5.- La memoria y anejos a la memoria.

22.6.- Los planos.

22.7.- El pliego de prescripciones técnicas particulares.

22.8.- El presupuesto.

22.9.- Estudios, informes, peritaciones y certificaciones.

Page 11: Aplicaciones Topograficas

5/8/2018 Aplicaciones Topograficas - slidepdf.com

http://slidepdf.com/reader/full/aplicaciones-topograficas 11/116

 

PROGRAMA

99 

BIBLIOGRAFÍA:

TOPOGRAFÍA:

- Francisco Domínguez García-Tejero.

"TOPOGRAFÍA ABREVIADA". MADRID. Dossat. 1.974.- Fernando Martín Asín.

"GEODESIA Y CARTOGRAFÍA MATEMÁTICA". MADRID. Paraninfo. 1.983.

- José Luis Ojeda Ruiz.

"MÉTODOS TOPOGRÁFICOS".

- Rafael Ferrer Torio y Benjamín Piña Patón.

"FOTOGRAMETRÍA". SANTANDER. E.T.S.I.C.C. y P.. 1.986.

"Actividades de campo y de gabinete". SANTANDER. E.T.S.I.C.C. y P.. 1.987.

GEOTECNIA:

José Antonio Jiménez Salas.

"GEOTECNIA". Tomos I, II, III.

José Calavera.

"CALCULO DE ESTRUCTURAS DE CIMENTACIÓN".

ESTRUCTURAS:

Avelino Samartín Quiroga.

"APUNTES DE ESTRUCTURAS ARTICULADAS"."APUNTES DE ESTRUCTURAS ARTICULADAS".

"CALCULO MATRICIAL".

Jiménez Montoya.

"HORMIGÓN ARMADO".

Page 12: Aplicaciones Topograficas

5/8/2018 Aplicaciones Topograficas - slidepdf.com

http://slidepdf.com/reader/full/aplicaciones-topograficas 12/116

 

INTRODUCCION

T1 - 1

ÍNDICE

1.- INTRODUCCIÓN. NECESIDAD Y OBJETO DE LA TOPOGRAFÍA.

1.1.- OBJETIVOS Y CONTENIDO BÁSICO.

- Objeto de la TOPOGRAFÍA.

- Cartas, mapas y planos.

- Escalas.

1.2.- LIMITES DE LA PERCEPCIÓN VISUAL.

1.3.- LEVANTAMIENTOS TOPOGRÁFICOS.

- Clasificación.

- Sistemas básicos de representación.

- Distancia geométrica y reducida.

- Planos acotados.

- Partes de un levantamiento.

- Métodos topográficos.

- Influencia de la esfericidad terrestre.

1.4.- GEODESIA Y TOPOGRAFÍA.- La forma de la Tierra.

- Redes geodésicas.

- Determinación del elipsoide.

1.5.- TOPOGRAFÍA Y LA INGENIERÍA.

- Campo de acción.

- Aplicaciones generales, en particular,

a la ingeniería eléctrica.

APÉNDICE 1.

A1.1. FOTOGRAFÍAS DE DISTINTOS TRABAJOS

Page 13: Aplicaciones Topograficas

5/8/2018 Aplicaciones Topograficas - slidepdf.com

http://slidepdf.com/reader/full/aplicaciones-topograficas 13/116

 

INTRODUCCIÓN

TT11 -- 22 

1.1.- OBJETIVOS Y CONTENIDO BÁSICO.

- Objeto de la TOPOGRAFÍA: es el estudio de los métodos necesarios para llegar a representar un

terreno con todos los detalles naturales o creados por la mano del hombre, así como el conocimiento y manejo de

los instrumentos que se precisan para tal fin.

- Mapas: Toda representación plana de una parte de la superficie terrestre que, por la extensión y

debido a la curvatura de la superficie del planeta, requiera hacer uso de sistemas especiales de transformación

propios de la Cartografía.

Cartas: Son mapas marinos, utilizados para la navegación (características del mar_).

Planos: Es la representación gráfica que por la escasa extensión de superficie a que

se refiere no exige hacer uso de los sistemas cartográficos, se apoyen o no los trabajos en la geodesia.

- Escalas: Relación PAPEL / REALIDAD.

Mapa Nacional: 1/50.000(1/25.000) Menores ajenos a la Topografía.

Planos: 1/10.000; 1/5.000; 1/2.000; 1/1.000; 1/500 (1/100 Detalle)

Catastro Parcelario: 1/10.000; 1/5.000; 1/2.000

1.2.- LIMITES DE LA PERCEPCIÓN VISUAL.

0,2 mm. 

_

1.3.- LEVANTAMIENTOS TOPOGRÁFICOS.

- Definición: Conjunto de operaciones necesarias para representar topográficamente un terreno.

- Clasificación:

- Regulares: con instrumentos más o menos precisos con un fundamento científico.

- Precisión: Instrumentos y métodos en relación con la escala

adoptada.

- Expedito: En caso contrario.

- Irregulares: instrumentos elementales y métodos intuitivos.

- Sistemas básicos de representación. Geometría Descriptiva.

Perspectivas: Axonométrico, Cónico.

Métricos: Diédrico, ACOTADO.

- Planos acotados.- Distancia geométrica: Distancia real entre dos puntos, según la recta que los une.

- Distancia reducida: Distancia en proyección.

Page 14: Aplicaciones Topograficas

5/8/2018 Aplicaciones Topograficas - slidepdf.com

http://slidepdf.com/reader/full/aplicaciones-topograficas 14/116

 

INTRODUCCION

T1 - 3

- Desnivel: Diferencia de cotas de los extremos.

- Pendiente de una recta: tangente trigonométrica del ángulo que forma con el plano

de comparación. El inverso se llama Módulo o intervalo.

- Partes de un levantamiento.

- Proyección horizontal: Planimetría.

- Cota: Altimetría.

- Proyección horizontal y cota: Taquimetría.

* Trabajos de campo y de gabinete.

- Métodos topográficos.

- Planimétricos: Intersección (Triangulación), Itinerario (Poligonales) y Radiación

(Relleno).

- Altimétricos: Nivelación Geométrica y N. Trigonométrica.

- Influencia de la esfericidad terrestre.

- Planimetría: Convergencia de los meridianos_

- Altimetría: Convergencia de las superficies equipotenciales_

1.4.- GEODESIA Y TOPOGRAFÍA.

- La forma de la Tierra.

Reseñas históricas:

- Aristóteles (550 a.J.C.) redondez de la Tierra.

- Eratóstenes (250 a.J.C.) Radio de la Tierra, longitud y amplitud de un meridiano entre Siena y

Alejandría.(La longitud estimada de la circunferencia 40.000 Km con un error de 600 Km).

- Newton 1.687: gravedad es normal a la superficie en todos los puntos. Datum: normal del geoide

y elipsoide coinciden.

- Satélites Artificiales.

NASA: Vanguard I, II, III.

- Método geométrico

Triangulación→ Tetraedrización

Rayos Laser: 1500, 4000, 7000 Km

1964 SAO

1967 VEIS

- Elipsoide internacional: a = 6.378.142 ± 6 m.

- Aplanamiento Terrestre: α = (a-b)/a = 1/(298,255 ± 0,005)

Page 15: Aplicaciones Topograficas

5/8/2018 Aplicaciones Topograficas - slidepdf.com

http://slidepdf.com/reader/full/aplicaciones-topograficas 15/116

 

INTRODUCCIÓN

TT11 -- 44 

Planisferios: Curvas de nivel cada 10 a 10 metros

España: Abultamiento del geoide de 51 m.A 40° de latitud, según el elipsoide de Struve, el radio es de 6.375 Km.

- Redes geodésicas.

- Determinación del elipsoide. Latitud y longitud geodésicas (elipsoide). Latitud y longitud

astronómicas (geoide)

1.5.- TOPOGRAFÍA Y LA INGENIERÍA.

- Campo de acción.

- Aplicaciones generales y, en particular, a la ingeniería eléctrica.

Page 16: Aplicaciones Topograficas

5/8/2018 Aplicaciones Topograficas - slidepdf.com

http://slidepdf.com/reader/full/aplicaciones-topograficas 16/116

 

INTRODUCCION

T1 - 5

APÉNDICE 1.1

FOTOGRAFÍAS DE DISTINTAS OBRAS

Page 17: Aplicaciones Topograficas

5/8/2018 Aplicaciones Topograficas - slidepdf.com

http://slidepdf.com/reader/full/aplicaciones-topograficas 17/116

 

ERRORES

TT22 -- 11 

ÍNDICE

2.- TEORÍA DE ERRORES.

2.1.- NECESIDAD DE SU ESTUDIO: PRINCIPALES CAUSAS.

2.2.- ERRORES.

2.2.1.- ERRORES Y EQUIVOCACIONES.

2.2.2.- ERRORES SISTEMÁTICOS Y ACCIDENTALES.

2.2.3.- ERRORES VERDADEROS Y APARENTES.

2.3.- HIPÓTESIS PREVIAS.

2.4.- LA MEDIA ARITMÉTICA. PROPIEDADES.

2.5.- CONCEPTO DE PRECISIÓN.

2.6.- FORMAS USUALES DE ERROR: probable, medio aritmético, máximo, medio cuadrático.

RELACIONES.

2.7.- COMPOSICIÓN Y TRANSMISIÓN DE ERRORES.

2.7.1.- Introducción.

2.7.2.- Error en una suma.

2.7.3.- Error en un producto.

2.7.4.- Error de una media.

2.7.5.- Error de la media ponderada.

2.8.- UNIDADES DE MEDIDA.

2.8.1.- Unidades de ángulos.

2.8.2.- Unidades de longitud.

2.8.3.- Unidades de superficie.

2.8.4.- Unidades de volumen.

APÉNDICE 2

A2.1.- TOLERANCIAS EN INGENIERÍA CIVIL

A2.2.- EJEMPLOS DE ESTADÍSTICA

A2.3.- PLANTILLAS PARA TRABAJOS DE CAMPO

Page 18: Aplicaciones Topograficas

5/8/2018 Aplicaciones Topograficas - slidepdf.com

http://slidepdf.com/reader/full/aplicaciones-topograficas 18/116

 

EERRRROORREESS 

T2 - 2

2.- LOS ERRORES Y SUS CAUSAS.

Toda técnica de medida está sometida a la inevitable dependencia de los ERRORES.

2.1.- Principales causas:

1.- El límite de precisión del propio instrumento de medida.

2.- La limitación de los sentidos.

3.- Condiciones ambientales.

Instrumentales.

Humanas.

Naturales.TOPOGRAFÍA ________ MEDIR _______ ÁNGULOS Necesidad de

DISTANCIAS su estudio.

2.2.- ERRORES.

Los principales tipos de error son:

2.2.1.- GROSEROS O EQUIVOCACIONES.

No son admisibles y se eliminan por medio de

- controles.

- verificaciones.

2.2.2.- SISTEMÁTICOS.

En operaciones escalonadas se acumulan. Son evitables:

- por un método de trabajo, sin necesidad de conocerlos.

Se corrigen:

- por un método de trabajo, por correcciones complementarias.

2.2.3.- ACCIDENTALES.

Provienen de la combinación de todas las causas posibles son evaluables y puede establecerse algún tipo de

acotación.

Page 19: Aplicaciones Topograficas

5/8/2018 Aplicaciones Topograficas - slidepdf.com

http://slidepdf.com/reader/full/aplicaciones-topograficas 19/116

 

ERRORES

TT22 -- 33 

2.3.- HIPÓTESIS PREVIAS.

- Los errores son más probables cuanto más pequeños.

- La suma de los productos binarios es despreciable.

2.4.- LA MEDIA ARITMÉTICA. PROPIEDADES.

Concepto de media aritmética.- Se define como media aritmética a la suma de todos los valores obtenidos de la

magnitud medida, dividida por el número de medidas realizadas.

Mediciones: m1, m2, m3, ..., mn.

Concepto de media:

n

mmm M 

n+++

=...21  

Propiedades de la media aritmética.

1.- La suma de los errores o residuos obtenidos es cero, denominando residuo a la diferencia de cada valor respecto

de la media.

residuos: ξ´1, ξ´2, ξ´3, .... ξ´n 

ξ´1 = M-m1 

ξ´2 = M-m2 

ξ´3 = M-m3 

...

ξ´n= M-mn 

sumando m. a m.:

ξ´1+ ξ´2+ ξ´3+ .... + ξ´n = M + M + M + ... + M - ( m1+ m2+ m3+ ...+ mn) = M*n - M*n = 0

Σ ξ´i= 0

2.- Si la suma de los cuadrados de los errores o residuos es mínima, el valor más probable es la media aritmética de

los valores de la magnitud medida.

residuos: ξ´1, ξ´2, ξ´3, .... ξ´n 

ξ ´12 = (M-m1)2 

ξ ´22

 = (M-m2)2 

ξ ´32 = (M-m3)2 

...

ξ ´n

2

 = (M-m

n)2 

Page 20: Aplicaciones Topograficas

5/8/2018 Aplicaciones Topograficas - slidepdf.com

http://slidepdf.com/reader/full/aplicaciones-topograficas 20/116

 

EERRRROORREESS 

T2 - 4

ξ ´12 + ξ ´2

2 + ξ ´32 +...+ ξ ´n

2 = (M-m1)2+(M-m2)2+(M-m3)2+...+(M-mn)2 

Σ ξ ´i

2

= (M-m1)

2

+ (M-m2)

2

+ (M-m3)

2

+... + (M-mn)

2

 

Para que esta expresión sea mínima, ha de anularse la primera derivada:

2(M-m1)+ 2(M-m2)+ 2(M-m3) +... + 2(M-mn)= 0

M*n - ( m1+ m2+ m3+ ...+ mn) = 0

n

mmm M 

n+++

=...21  

La media aritmética de una serie de valores, tomada para caracterizar a dicha magnitud, equivale a considerar que la

suma de los cuadrados de los residuos es mínima: La media aritmética es el valor más probable de las medidas

efectuadas.

2.5.- CONCEPTO DE PRECISIÓN.

Se define como precisión en una serie de medidas, el grado de acercamiento obtenido respecto del valor real.

Considerando este concepto, parece natural utilizar para su medida el valor:

Σ ξ´i2 

ya que caracteriza la precisión de las medidas efectuadas.

Cuanto más pequeña sea dicha suma más próximos estarán entre sí los valores mi y más garantía tendrá el valor M.

Por la misma razón es igualmente normal medir la precisión de cada una de las observaciones realizadas por la

expresión:

n

i∑ 2´ξ  

Si los errores disminuyen, la precisión aumenta.

2.6.- FORMAS USUALES DEL ERROR.

Al disponer de una serie de medidas de una determinada magnitud, frecuente emplear diversas formas del error.

1.- ERROR PROBABLE: es aquél que tiene su posición centrada una vez ordenados por su magnitud, prescindiendo

del signo.

2.- ERROR MEDIO ARITMÉTICO: es la media aritmética de todos los errores conocidos, prescindiendo del signo.

Page 21: Aplicaciones Topograficas

5/8/2018 Aplicaciones Topograficas - slidepdf.com

http://slidepdf.com/reader/full/aplicaciones-topograficas 21/116

 

ERRORES

TT22 -- 55 

3.- ERROR MÁXIMO: es el error que marca la barrera de la tolerancia. Suele tomarse un valor del error medio

cuadrático, normalmente 2,5.

4.- ERROR MEDIO CUADRÁTICO. Si se considera una serie de errores reales respecto del verdadero valor de la

magnitud que evalúa, se define como error medio cuadrático:

ne

i

c

∑=2´ξ 

 

Al no conocer los errores reales se utiliza otra expresión en función de los errores aparentes obtenidos respecto de la

media M.

1

−= ∑

ne

i

c

ξ  

Errores: ξi verdadero ................ X

ξ´i aparente ............ .. M

* Expresiones iniciales.

ξ1= X-m1 ξ´1= M-m1 

ξ2= X-m2 ξ´2= M-m2 

ξ3= X-m3 ξ´3= M-m3 

... ...

ξn= X-mn  ξ´n= M-mn 

* Restando ordenadamente.

ξ1- ξ´1= X-M ξ1= ξ´1+ (X-M)

ξ2- ξ´2= X-M ξ2= ξ´2+ (X-M)

... ...ξn- ξ´n= X-M ξn= ξ´n+ (X-M)

* Elevando al cuadrado.

ξ12= ξ´1

2 + (X-M)2+ 2 ξ´1 (X-M)

ξ22= ξ´2

2+ (X-M)2+ 2 ξ´2 (X-M)

...

ξn2= ξ´n

2+ (X-M)2+ 2 ξ´n(X-M)

Page 22: Aplicaciones Topograficas

5/8/2018 Aplicaciones Topograficas - slidepdf.com

http://slidepdf.com/reader/full/aplicaciones-topograficas 22/116

 

EERRRROORREESS 

T2 - 6

*Sumando miembro a miembro.

Σ ξi

2 = Σ ξ´i

2

 + n (X-M)2 + 2 (X-M) Σ ξ´

Σ ξ´i= 0

Σ ξi2 = Σ ξ´i

2 + n (X-M)2 

Por otra parte, sumando las expresiones:

ξ1- ξ´1= X-M

ξ2- ξ´2= X-M

...

ξn- ξ´n= X-M

Σ ξi - Σ ξ´i = Σ ξi = n (X-M)

n M  X 

i∑=−ξ 

 

elevando al cuadrado:

( )2

22

n M  X 

i∑=−ξ 

 

Σ ξi ξ  ́j = 0

2

22´2

nn

i

ii

∑∑∑ +=ξ 

ξ ξ   

∑∑ ⎟ ⎠ ⎞

⎜⎝ ⎛  −= 22´ 11

ii

nξ ξ   

1

2´2

−= ∑∑

nn

iiξ ξ 

 

Error medio cuadrático:

nne

ii

c

∑∑ =−

=22´

1

ξ ξ  

Una vez definido el error medio cuadrático se define el error de la media al cociente:

n

cuadráticomedio Error e

m

c

__=  

Page 23: Aplicaciones Topograficas

5/8/2018 Aplicaciones Topograficas - slidepdf.com

http://slidepdf.com/reader/full/aplicaciones-topograficas 23/116

 

ERRORES

TT22 -- 77 

( )1

−= ∑

nn

eim

c

ξ  

Page 24: Aplicaciones Topograficas

5/8/2018 Aplicaciones Topograficas - slidepdf.com

http://slidepdf.com/reader/full/aplicaciones-topograficas 24/116

 

EERRRROORREESS 

T2 - 8

EJERCICIOS PROPUESTOS.

1.- Al cerrar una nivelación de 4 Km. de longitud se obtienen las siguientes cotas para el punto final:

128,351 m.; 128,353 m.; 128,350 m.; 128,354 m.; 128,351 m. Se pide:

1.- ¿Qué valor se adoptaría?.

2.- ¿Cuál será el error medio cuadrático?.

3.- Hallar la precisión de la medida.

2.- En el caso anterior definir:

1.- La gráfica de la función de distribución.

2.- La desviación típica.3.- La probabilidad de que la cota sea 128,352 m.

Page 25: Aplicaciones Topograficas

5/8/2018 Aplicaciones Topograficas - slidepdf.com

http://slidepdf.com/reader/full/aplicaciones-topograficas 25/116

 

ERRORES

T2 - 1

Ejemplo.- Calcular los errores medios cuadráticos de una observación aislada, error máximo y error medio

cuadrático de la media de una serie de valores angulares, medidos con un teodolito centesimal.

Acimutales

61g

31m

32s

61g

30m

80s 

31 06 31 20

31 10 31  00

30 86 30 90

31 02 31 10

31 26 31 44

1.- Se evalúa el valor de la media de las lecturas n = 12, y sus residuos ξ´.

ξ'i  ξ'i

61g 31m 32s -23 529

31 06 +3 9

31 10 -1 1

30 86 +23 529

31 02 +7 49

31 26 -17 289

61g 30m 80s 29 841

31 20 -11 121

31  00 +9 8130 90 +19 361

31 10 -1 1

31 44 -35 1225

0 4036

2.- La media es M = 61g 31m 09s.

3.- El error medio cuadrático de una observación aislada es:

si

cn

e 1911

4036

1

==−

= ∑ξ  

4.- El error máximo es: ea = 2,5 x ec = 2,5 . 19s = 47s 

Revisando la tabla se observa que no hay ninguna lectura con un residuo mayor que el error máximo, por lo cual

no hay que rehacer el cálculo de la media, ni de los errores anteriores.

5.- Error medio cuadrático de la media (precisión):

ecm

=19 s

12 = 6s

6.- El valor del acimut calculado es: 61g 31m 09s± 6s 

Page 26: Aplicaciones Topograficas

5/8/2018 Aplicaciones Topograficas - slidepdf.com

http://slidepdf.com/reader/full/aplicaciones-topograficas 26/116

 

ERRORES

T2 - 2

La evaluación de los errores en las lecturas se puede abordar también de forma estadística como refleja en el

siguiente ejemplo.

Ejemplo.- Se ha medido un ángulo cenital con un teodolito centesimal en 36 lecturas, cuyos resultados han dado

los siguientes valores:

137g 44m,633  44m,644 44m,644 44m,603 44m,700 44m,603

44m,700 44m,700 44m,644 44m,633 44m,700 44m,644

44m,633 44m,700 44m,644 44m,644 44m,603 44m,644

44m,644 44m,603 44m,644 44m,667 44m,808 44m,633

44m,644 44m,700 44m,644 44m,603 44m,667 44m,700

44m,644 44m,700 44m,644 44m,644 44m,644 44m,644

1.- Se agrupan los datos:

Datos Frecuencia Residuo(m) Residuo al cuadrado(m2)

137g 44m,603 5 0,052 0,0522 x 5 = 0,01352

44m,633 4 0,022 0,0222 x 4 = 1,936 E-3

44m,644 16 0,011 0,0112 x 16 = 1,936 E-3

44m,667 2 -0,012 (-0,012)2 x 2 = 2,88 E-444m,700 8 -0,045 (-0,045)2 x 8 = 0,0162

44m,808 1 -0,153 (-0,153)2 x 1 = 0,023409

36 0,057 m2 = 0,00057 g2 

La media es: 137,44655.

La desviación típica es:

g004,0

35

00057,0==σ   

La distribución a que obedecen estos datos es una normal(campana de Gauss). Así se puede calcular la

probabilidad de que un valor esté comprendido entre otros dos, por ejemplo, entre 137,44606 y 137,44808:

137,44606 > Za=(X1-M)/ σ = (137,44606 - 137,44655)/ 0,004 = -1,225

137,44808 > Zb=(X2-M)/ σ = (137,44808 - 137,44655)/ 0,004 = 3,825

Del cuadro de valores tipificado de la distribución normal N(0,1) se obtendría (ver gráfica):

1,0 - 0,8888 = 0,1112

Page 27: Aplicaciones Topograficas

5/8/2018 Aplicaciones Topograficas - slidepdf.com

http://slidepdf.com/reader/full/aplicaciones-topograficas 27/116

 

ERRORES

T2 - 3

0,9990

Pr = 0,999 - 0,1112 = 0,89 = 89%

También se podría deducir la probabilidad de tener una medida inferior a un valor preestablecido, por ejemplo,

137,4450:

137,4450 > Zc=(X3-M)/ σ = (137,4450 - 137,44655)/ 0,004 = -3,875

Pr = 1 - 0,9999 = 0,0001 = 0,01%

O también se podría deducir la probabilidad de tener una medida superior a un valor preestablecido, por

ejemplo, 137,44722:

137,44722 > Zd=(X4-M)/ σ = (137,44722 - 137,44655)/0,004 = 1,67

Pr= 0,5 + 0,4525 = 0,9525 > Pr = 1 - 0,9525 = 0,0475 = 4,75%

RELACIÓN ENTRE LOS ERRORES DEFINIDOS.

Error probable -------------- ep Error medio aritmético ------ ea 

Error máximo ---------------- em 

Error medio cuadrático ------ ec 

Cuando se dispone de un número suficientemente grande de medidas de una magnitud es fácil comprobar que se

verifican las siguientes relaciones.

em

≈ 2,5 ec≈ 3 e

a≈ 4 e

Por otra parte, los errores ea, ec y ep están relacionados con la medida o módulo de precisión por las siguientes

relaciones.

3

2c

 p

ee =  

em = 4 e

Page 28: Aplicaciones Topograficas

5/8/2018 Aplicaciones Topograficas - slidepdf.com

http://slidepdf.com/reader/full/aplicaciones-topograficas 28/116

 

ERRORES

T2 - 4

2.7.- COMPOSICIÓN O TRANSMISIÓN DE ERRORES.

2.7.1.- INTRODUCCIÓN.

Sea A una cantidad a determinar que es función de otras varias: x, y, z, ligadas por una función: A = f(x,y,z)

Sean dx, dy, dz, los errores respectivos de las medidas x, y, z. Se demuestra que el error medio cuadrático de A

está dado por la expresión:

22

2

2

22

dz z

 f dy

 y

 f dx

 x

 f e A ⎥⎦

⎤⎢⎣

⎡∂∂

+⎥⎦

⎤⎢⎣

∂∂

+⎥⎦

⎤⎢⎣

⎡∂∂

=  

2.7.2.- ERROR EN UNA SUMA.

A = x + y + z

111 =∂∂

=∂∂

=∂∂

 z

 f 

 y

 f 

 x

 f  

222dzdydxe A ++=  

23

22

21 eeee A ++=  

Si uno de los sumandos tiene un valor pequeño frente a los restantes, puede despreciarse.

2.7.3.- ERROR EN EL PRODUCTO.

A = X + X + X + .... + X

A= n X

nedxndxne A === 2  

2.7.4.- ERROR DE UNA MEDIA.

n

 z y x A

+++=

... 

n z

 f 

 y

 f 

 x

 f  1... =

∂∂

==∂∂

=∂∂

 

n

e

n

dx

n

dxne A

=== 2

2

 

2.7.5.- ERROR DE LA MEDIA PONDERADA.

La media es el valor más probable de una serie de medidas, que están realizadas con la misma precisión.

En el caso de realizar mediciones con diferente precisión aparece un nuevo concepto: media ponderada.

Page 29: Aplicaciones Topograficas

5/8/2018 Aplicaciones Topograficas - slidepdf.com

http://slidepdf.com/reader/full/aplicaciones-topograficas 29/116

 

ERRORES

T2 - 5

Si para una cantidad M se han obtenido una serie de valores, con distintas precisiones, conlleva considerar a

cada medición de un peso.

Medida Peso

M1 P1 M2 P2 

M3 P3 

........... .........

Mn Pn 

n

nn

PPP

 M P M P M PPonderada Media

++++++

=...

...

21

2211  

Page 30: Aplicaciones Topograficas

5/8/2018 Aplicaciones Topograficas - slidepdf.com

http://slidepdf.com/reader/full/aplicaciones-topograficas 30/116

 

ERRORES

T2 - 6

Ejemplo.- Se desea determinar la media ponderada de un ángulo medido con distintos aparatos, habiéndose

obtenido los siguientes resultados con cada uno de ellos:

a.- Cinco veces, con una media M1=144° 22' 57,9'' y un error medio cuadrático de 1= ± 2''.

b.- Cuatro veces, con una media M2=144° 22' 58,8'' y un error medio cuadrático de 2= ± 4''.c.- Quince veces, con una media M3=144° 22' 59,4' y un error medio cuadrático de 3= ± 3''.

1.- El error medio cuadrático de cada media es:

''0,8945

'2' e mc1

==  

'2'4

'4' e mc2

==  

''0,77415

'3' e mc3 ==  

2.- Los pesos son:

P1 = 1/(ec1m)2 = 5/4

P2 = 1/(ec2m)2 = 1/4

P3 = 1/(ec3m)2 = 15/9

3.- Se hace uno de los pesos la unidad:

P1 = 4 . 5/4 = 5

P2 = 4 . 1/4 = 1

P3 = 4 . 15/9 = 6,7

de donde se deduce que P1 es 5 veces más preciso que P2, y P3 es 6,7 veces más preciso que P2.

La media ponderada sería, considerando solo los segundos:

Mp= (57,9 x 5 + 58,8 x 1 + 59,4 x 6,7)/(5+1+6,7)= 58,8''

Mp= 144° 22' 58,8''

El valor de la media ponderada es más preciso que el que se obtendría directamente con las 24 medidas de

campo:

ξ  ξ2 P P ξ2 

57,9-58,8=-0,9 0,81 5,0 4,05

58,8-58,8=0 0,00 1,0 0,00

59,4-58,8=0,6 0,36 6,7 2,40

ΣP = 12,7 ΣP ξ

2= 6,5

Page 31: Aplicaciones Topograficas

5/8/2018 Aplicaciones Topograficas - slidepdf.com

http://slidepdf.com/reader/full/aplicaciones-topograficas 31/116

 

ERRORES

T2 - 7

( )∑∑−

=i

ii

mpPn

Pe

1

. 2´ξ 

 

M

p

= 144° 22' 58,8'' ± 0,5 ''

Page 32: Aplicaciones Topograficas

5/8/2018 Aplicaciones Topograficas - slidepdf.com

http://slidepdf.com/reader/full/aplicaciones-topograficas 32/116

 

ERRORES

T2 - 8

Ejemplo.- Para la valoración de una medida se han realizado dos series de lecturas agrupadas en las dos

columnas. ¿Cuál sería la media ponderada?.

A B625 626

623 624

624 627

627 626

624

625

1.- Las medias son: MA= 624,6

MB= 625,75

A ξ' ξ'2 B ξ' ξ'2 

625 -0,33 0,111 626 -0,25 0,062

623 1,66 2,777 624 1,75 3,062

624 0,66 0,444 627 -1,25 1,562

627 -2,33 5,444 626 -0,25 0,062

624 0,66 0,444 Σ ξB'2 = 4,748

625 -0,33 0,111

Σ ξA'2 = 9,333

La media cuadrática:

3662,15333,9

)( == Amcξ   

258,13748,4

)( == Bmc

ξ   

Para la serie A: emáx. = 2,5 . 1,3662 = 3,415

eprob.(A) = 1,366 . 0,625 = 0,8538

Para la serie B: emáx. = 2,5 . 1,258 = 3,145

eprob.(B) = 1,258 . 0,625 = 0,7862

luego:

5577,06

3662,1)( ==

 A M ξ    625,04

258,1)( == B M ξ   

MA=624,6 ± 0,5577 MB=625,75 ± 0,625

2151,35577,0

12==

 AP   56,2625,0

12==

 AP  

109,62556,22151,3

56,275,6252151,36,624=

++=

x x M 

P  

Page 33: Aplicaciones Topograficas

5/8/2018 Aplicaciones Topograficas - slidepdf.com

http://slidepdf.com/reader/full/aplicaciones-topograficas 33/116

 

ERRORES

T2 - 9

2.8.- UNIDADES DE MEDIDA.

2.8.1.- UNIDADES DE ÁNGULOS.

CENTESIMALES.SEXAGESIMALES.

Radianes.

2.8.2.- UNIDADES DE LONGITUD.

Metro: m.

cm.

mm.

2.8.3.- UNIDADES DE SUPERFICIE.

Metro cuadrado: m2, Centiárea.

Hectómetro cuadrado, Hectárea: Ha

2.8.8.- UNIDADES DE VOLUMEN.

Metro cúbico: m3 

Page 34: Aplicaciones Topograficas

5/8/2018 Aplicaciones Topograficas - slidepdf.com

http://slidepdf.com/reader/full/aplicaciones-topograficas 34/116

 

ERRORES

T2 - 10

APÉNDICE 1

TOLERANCIAS EN INGENIERÍA CIVIL

Page 35: Aplicaciones Topograficas

5/8/2018 Aplicaciones Topograficas - slidepdf.com

http://slidepdf.com/reader/full/aplicaciones-topograficas 35/116

 

ERRORES

T2 - 11

APÉNDICE 2

EJEMPLOS DE ESTADÍSTICA

Page 36: Aplicaciones Topograficas

5/8/2018 Aplicaciones Topograficas - slidepdf.com

http://slidepdf.com/reader/full/aplicaciones-topograficas 36/116

 

ERRORES

T2 - 12

APÉNDICE 3

PLANTILLAS PARA TRABAJOS DE CAMPO

Page 37: Aplicaciones Topograficas

5/8/2018 Aplicaciones Topograficas - slidepdf.com

http://slidepdf.com/reader/full/aplicaciones-topograficas 37/116

 

INSTRUMENTOS

T3 - 1

3.- INSTRUMENTOS TOPOGRÁFICOS Y ACCESORIOS. TEODOLITO.

3.1.- Elementos de los instrumentos topográficos. Objeto: medición de distancias y de ángulos.

3.2.- Elementos accesorios: Trípodes. Mecanismos de unión. Plataformas nivelantes. Tornillos deprecisión. Tornillos de coincidencia.

3.3.- Niveles: Nivel de aire. Nivel esférico. Sensibilidad del nivel. Estacionamiento de un

instrumento.

3.4.- Anteojo: Colimar. Ejes (Óptico, mecánico, colimación: Plano horizontal de colimación,

Plano vertical de colimación).

3.5.- Limbos: Ángulos (Sexagesimales. Centesimales). Nonios. Micrómetros.

3.6.- Medida de distancias: Directa (Cintas metálicas. Hilos de invar). Indirecta (Estadímetros:

constantes diastimométricas, determinación de las constantes. Miras: visuales inclinadas, lecturas de mira).

3.7.- Evaluación del error total en las punterías.

3.8.- Teodolito. Elementos constitutivos.

3.9.- Uso del teodolito: lecturas de ángulos acimutales y cenitales.

3.10.- Errores en un teodolito.

APÉNDICE

A1. TIPOS DE LECTURAS DE ÁNGULOS

A2. TEODOLITOS: SOKKISHA, WILD

A3. APLICACIONES

A4. PROGRAMA DE ORDENADOR

Page 38: Aplicaciones Topograficas

5/8/2018 Aplicaciones Topograficas - slidepdf.com

http://slidepdf.com/reader/full/aplicaciones-topograficas 38/116

 

INSTRUMENTOS

T3 - 2

3.1.- ELEMENTOS DE LOS INSTRUMENTOS TOPOGRÁFICOS.

OBJETO

- MEDICIÓN:

- DISTANCIAS:MEDIDA DIRECTA CINTAS METÁLICAS.

HILOS DE INVAR.

- ÁNGULOS.

ÁNGULOS AZIMUTALES (H) Y CENITALES (V):

- GONIÓMETROS

- ESCUADRAS

3.2.- ELEMENTOS ACCESORIOS:

TRÍPODES.

MECANISMOS DE UNIÓN.

PLATAFORMAS NIVELANTES.

TORNILLOS DE PRESIÓN.

TORNILLOS DE COINCIDENCIA.

3.3.- NIVELES:

NIVEL DE AIRE.

NIVEL ESFÉRICO.SENSIBILIDAD DEL NIVEL.

ESTACIONAMIENTO DE UN INSTRUMENTO.

3.4.- ANTEOJO:

COLIMAR.

EJES: ÓPTICO.

- Recta que une los centros ópticos del objetivo y del ocular.

MECÁNICO.

- Recta por el centro óptico paralela a la que describe, en el movimiento de enfoque, cualquier punto del tubo

ocular.

COLIMACIÓN.

- Recta que une el centro óptico del objetivo con el centro del retículo.

PH COLIMACIÓN

PV COLIMACIÓN

3.5.- LIMBOS:

Page 39: Aplicaciones Topograficas

5/8/2018 Aplicaciones Topograficas - slidepdf.com

http://slidepdf.com/reader/full/aplicaciones-topograficas 39/116

 

INSTRUMENTOS

T3 - 3

ÁNGULOS--SEXAGESIMAL, CENTESIMAL

NONIOS.

MICRÓMETROS.

3.6.- MEDIDA INDIRECTA DE DISTANCIAS:

ESTADIMETROS

CONSTANTES DIASTIMOMETRICAS

DETERMINACIÓN DE LAS CONSTANTES

MIRAS: VISUALES INCLINADAS.

LECTURAS DE MIRA.

3.7.- EVALUACIÓN DEL ERROR TOTAL EN LAS PUNTERÍAS.

Por bien diseñado y construido que esté un aparato y admitiendo una utilización extremadamente cuidadosa, es

inevitable no cometer error. Hay que controlar el error. Este control condiciona el tipo de aparato a utilizar.

Características del aparato:

- Sensibilidad: "s"

- Aumento: "a"

- Apreciación: "m"

Errores accidentales:- Error de verticalidad

- Error de dirección

- Error de puntería

- Error de lectura

1.- Error de verticalidad.

Al situar el aparato en la estación puede no quedar matemáticamente vertical el eje principal.

E

vc

< s/3 (")

Eva< s/12 (")

2.- Error de dirección.

La plomada, bastón centrador o colimación con plomada óptica, no incidirá exactamente sobre el punto de

estación, ni el jalón o mira se ubica de forma perfecta sobre el punto a visar.

"r  D

ee E 

pc

+≤  

x° = 360°/(2π) = 57,295779° = 206265"

xg = 400g /(2π) = 63,6620g = 636620s 

Page 40: Aplicaciones Topograficas

5/8/2018 Aplicaciones Topograficas - slidepdf.com

http://slidepdf.com/reader/full/aplicaciones-topograficas 40/116

 

INSTRUMENTOS

T3 - 4

ec + ep = 5 cm. plomada normal, estadía.

2,5 cm. plomada óptica, bastón.

3.- Error de puntería.La mira, banderola o jalón, al lanzar la visual son bisecados con el hilo vertical del retículo.

Observaciones azimutales:

Observaciones cenitales:

4.- Error de lectura.

A pesar de leer perfectamente incluso teniendo en cuenta la digitalización, siempre queda una fracción final a

estima.

5.- Error total.

Visuales azimutales: 2222l pad vata

E  E  E  E  E  +++≤ (“)

Visuales cenitales:222l pcvctc E  E  E  E  ++≤ (“)

La precaución que debe adoptarse, es la aplicación de la regla de Bessel: observación doble, con giro y vuelta de

campana, en cada punto a levantar.

Se incrementa la precisión disminuyendo el error de cada observación en 1/_2 al adoptar el valor promedio de

las dos lecturas.

Aplicándose al error El:

Page 41: Aplicaciones Topograficas

5/8/2018 Aplicaciones Topograficas - slidepdf.com

http://slidepdf.com/reader/full/aplicaciones-topograficas 41/116

 

INSTRUMENTOS

T3 - 5

Error gráfico: 0,2 mm.Escala del plano: E=1/M

Objetos no apreciable en el plano: 0,2 M mm.

La distancia a las que se puede realizar un trabajo topográfico con un aparato dentro de los límites de error

gráfico(ET=0,2M mm):

 Dr 

 E  E  ta

T  "

)("≤  

)(

)("

265,2062,0m

 E 

 M  D

ta

≤  

Page 42: Aplicaciones Topograficas

5/8/2018 Aplicaciones Topograficas - slidepdf.com

http://slidepdf.com/reader/full/aplicaciones-topograficas 42/116

 

INSTRUMENTOS

T3 - 6

Ejemplo.- Evaluar los errores totales que se obtiene con una aparato cuyas características son:

Sensibilidad: 40"

Aumento: 30

Apreciación: 20"

1.1.- Error de verticalidad:

Eva=40/12=3,33"

Evc=40/3=13,33"

1.2.- Error de dirección:

Ed=2,5*10-2 * 206265/150 = 34,4"

1.3.- Error de puntería:

Epa=(1+4*30/100)*10/30=0,73"

Epc=(1+4*30/100)*35/30=2,57"

1.4.- Error de lectura:

El=2*20/3=13,33"

1.5.- Error total acimutal:

Eta= (3,33"2 + 34,4"2 + 0,73"2 + 13,33"2 )1/2 = 37,03"

1.6.- Error total cenital:

Etc= (13,33"2 + 2,57"2 + 13,33"2 )1/2=19,03"

2.- ¿Sabría decir de qué tipo de aparato se trata?.

Es un teodolito, ya que el error es pequeño (ver punto 3.9).

Page 43: Aplicaciones Topograficas

5/8/2018 Aplicaciones Topograficas - slidepdf.com

http://slidepdf.com/reader/full/aplicaciones-topograficas 43/116

 

INSTRUMENTOS

T3 - 7

Ejemplo a resolver.- Evaluar los errores totales que se obtiene con una aparato T 16 cuyas características son:

Sensibilidad: 30"

Aumento: 30Apreciación: 1'

y la distancia de trabajo D para un plano a escala 1/200.

Page 44: Aplicaciones Topograficas

5/8/2018 Aplicaciones Topograficas - slidepdf.com

http://slidepdf.com/reader/full/aplicaciones-topograficas 44/116

 

 

T3 - 1

3.8.- TEODOLITO.

Esquema de un teodolito:

Movimientos de un teodolito:

Movimiento general.

Movimiento relativo particular de la alidada acimutal

Movimiento relativo particular del eclinómetro o alidada cenital.

Niveles:

Alidada acimutal

Eclinómetro

Anteojo

Uniones del eje horizontal: Nivel caballero.

3.9.- USO DEL TEODOLITO.

Trabajos de máxima precisión: observaciones acimutales en las triangulaciones

con grandes distancias.

Triangulaciones geodésicas y topográficas.

Apreciación mayor de 1 minuto

T1

T2 o teodolito de segundos.

T3 triangulaciones de 2º orden.

Page 45: Aplicaciones Topograficas

5/8/2018 Aplicaciones Topograficas - slidepdf.com

http://slidepdf.com/reader/full/aplicaciones-topograficas 45/116

 

 

T3 - 2

T4 triangulaciones de 1er orden; astronómico o geodésico (0,1").

Casas comerciales: Galileo, Sokkisha, Wild, Zeiss.

Red geodésica.

- 1er orden: 30 a 70 Km.

4 cadenas de meridiano (Salamanca, Madrid, Pamplona, Lérida).

3 cadenas de paralelo (Palencia, Madrid, Badajoz).

3 cadenas de costa (Norte, Este, Sur).

Base única: Madridejos(Toledo) 14622,885 m.; ep= 2,508 mm.

Bases periféricas 5: 2 a 3 Km (Lugo, Olita (Navarra), Vich (Barcelona),

Cartagena (Murcia), Arcos de la Frontera (Cádiz)).

Señalización: Macizos circulares de mampostería de 3 m. de diámetro y de 5 a 7

m. de altura.

- 2º orden: 10 a 25 Km.

Señalización: Macizos paralepipédicos de sección cuadrada 1.5 m. de lado.

- 3er orden: 5 a 10 Km.

Señalización: Macizos paralepipédicos con una inscripción cuadrada de 30 cm. de

lado.

3.10.- Disminución de los errores accidentales: Métodos de lectura.

Método de repetición: L0, L1; L0, L2; L0, L3;_

2

2

2222222 22l pd vl pd v

nneeeee ε ε ε ε  +++≤+++≤  

Método de reiteración: L1, L2; L3, L4; L5, L6;_

( )22222222 2

l pd vl pd v neeeee ε ε ε ε  +++≤+++≤

 

Page 46: Aplicaciones Topograficas

5/8/2018 Aplicaciones Topograficas - slidepdf.com

http://slidepdf.com/reader/full/aplicaciones-topograficas 46/116

 

TAQUÍMETRO

T4 - 1

4.- DISTANCIAS. DISTANCIOMETRO. TAQUÍMETRO.

4.1.- Métodos de evaluación de distancias

4.1.1.- Cinta (aplicaciones)

4.1.2.- Medidas indirectas

4.1.3.- Distanciómetro

4.1.3.1.- Fundamento

4.1.3.2.- Aplicación

4.1.3.3.- Manejo

4.1.3.- Fundamento de los métodos estadimétricos.

4.2.- Taquímetro.

4.3.- Uso del taquímetro.

4.4.- Desarrollo de la libreta.

4.5.- Cálculo del desnivel.

4.6.- Error longitudinal.

APÉNDICES

A1.- MEDIDA DE DISTANCIAS

A2.- CATÁLOGOS DE DISTANCIÓMETROS

A3.- LEVANTAMIENTO DE PLANOS

Page 47: Aplicaciones Topograficas

5/8/2018 Aplicaciones Topograficas - slidepdf.com

http://slidepdf.com/reader/full/aplicaciones-topograficas 47/116

 

TAQUÍMETRO

T4 - 2

4.- DISTANCIAS. DISTANCIOMETRO. TAQUÍMETRO.

4.1.- MÉTODOS DE EVALUACIÓN DE DISTANCIAS

MEDICIONES INDIRECTAS.

PRINCIPALES INSTRUMENTOS.

MEDIR: Ángulos Teodolitos.

DISTANCIAS 1.- TEODOLITO + ESTADÍA DE INVAR.

2.- TAQUÍMETRO (Métodos

estadimétricos).

3.- DISTANCIOMETRO.

EVALUACIÓN DE DISTANCIAS: FLUJOS CARACTERÍSTICOS.

4.1.1.- CINTA

APLICACIONES

Page 48: Aplicaciones Topograficas

5/8/2018 Aplicaciones Topograficas - slidepdf.com

http://slidepdf.com/reader/full/aplicaciones-topograficas 48/116

 

TAQUÍMETRO

T4 - 3

4.1.2.- MEDIDAS INDIRECTAS

4.1.2.1.- TEODOLITO + ESTADÍA DE INVAR.

ESTADÍA HORIZONTAL DE INVAR.

Medidas de gran precisión: Bases.

Teodolito de segundos.

Mira de invar: Aleación de Hierro-Níquel.

Buenas propiedades térmicas.

Longitud: (1-2-3) m.

4.1.3.- Distanciómetro

4.1.3.1.- Fundamento

Distanciómetro Electrónico. Medida indirecta por medio de ondas.

Medición de lados: TRILATERACIÓN.

Geodímetro. Suecia. 1948. Luz modulada.(AGA).

Telurómetro. Gran Bretaña. Microondas de radio.Distomat. Suiza.

1962. DI-50(Wild). Rayos infrarrojos. (150 Km).

1968. DI-10(Wild).

4.1.3.2.- Aplicación

Alternativas: Distanciómetro + Teodolito.

Equipo compacto.

Page 49: Aplicaciones Topograficas

5/8/2018 Aplicaciones Topograficas - slidepdf.com

http://slidepdf.com/reader/full/aplicaciones-topograficas 49/116

 

TAQUÍMETRO

T4 - 4

4.1.3.3.- Manejo

Fundamento Básico del Distanciómetro.

- La radiación es modulada en intensidad, según una ley de tipo senoidal por un

oscilador de alta frecuencia.

- El haz emitido tiene una dispersión del orden de 15'

- Para medir las distancias se adopta como unidad de longitud la de la propiaonda:

- nº entero de ondas.

- una fracción de onda: importancia del desfase.

4.1.4.- FUNDAMENTO DE LOS MÉTODOS ESTADIMÉTRICOS.

Retículo disco de vidrio con dos hilos grabados.Cruz filiar: centro del retículo (colimar)

Mira: regla graduada.

K constante DIASTIMOMETRICA

K=100 1 cm. mira _ 100 cm.= 1 m.1 m. mira _ 100 m.

Page 50: Aplicaciones Topograficas

5/8/2018 Aplicaciones Topograficas - slidepdf.com

http://slidepdf.com/reader/full/aplicaciones-topograficas 50/116

 

TAQUÍMETRO

T4 - 5

Tipos de Mira.

- Graduadas: Parlantes.

Mudas.

- Material.

- Forma.

Alcance de los estadímetros:

- Apreciar con seguridad la media división de la mira.

- Límite de visibilidad: Claridad en la mira.

Iluminación

- A simple vista( normal) la media división en una mira de doble centímetro se

aprecia a 20 m:

1 cm. se aprecia a 11 m.

0,5 cm. se aprecia a 6 m.

- A través del anteojo de "a" aumentos no se multiplican por "a" las distancias

(absorción de la luz, claridad del anteojo, aberraciones,...).

- Ejemplos de apreciación de media división.

Aumentos Día despejado Visibilidad Media

Sol de frente Sol de espaldas

1 cm. 2 cm. 1 cm. 2 cm. 1 cm. 2 cm.

10 100 180 140 230 80 140

20 150 245 190 285 125 200

30 200 310 250 350 170 260

Page 51: Aplicaciones Topograficas

5/8/2018 Aplicaciones Topograficas - slidepdf.com

http://slidepdf.com/reader/full/aplicaciones-topograficas 51/116

 

TAQUÍMETRO

T4 - 6

Error relativo el que se comete a la distancia límite que permite apreciar en la mira la media

división: ε= v K/(2D); donde v es el valor de la división, K es la constante diastimométrica, D

distancia límite.

Aumentos División de la mira Valores de K 

a v (m.) 50 100 200 250

10 0,02 0,36 0,72 - -

0,01 0,31 0,62 - -

20 0,02 0,25 0,50 1,00 -

0,01 0,20 0,40 0,80 1,00

30 0,02 0,19 0,38 0,77 0,96

0,01 0,14 0,29 0,58 0,73

Falta de verticalidad de la mira: ε= δ" tag α/r"

Alturas de horizonte( α ) Inclinación de la mira( δ").

30' 1° 1°30' 2°

0° 0,00 0,00 0,00 0,00

5° 0,08 0,15 0,23 0,30

10° 0,15 0,31 0,46 0,62

20° 0,31 0,62 0,93 1,25

30° 0,50 1,01 1,51 2,02

Page 52: Aplicaciones Topograficas

5/8/2018 Aplicaciones Topograficas - slidepdf.com

http://slidepdf.com/reader/full/aplicaciones-topograficas 52/116

 

TAQUÍMETRO

T4 - 7

4.2.- TAQUÍMETRO.

Instrumento topográfico que evalúa simultáneamente ángulos y distancias.

4.3.- USO DEL TAQUÍMETRO

Determinación simultanea de la cota por métodos taquimétricos. Indicado para itinerarios.

Apreciación: 0,5 m : 2,0 m.

Graduación sexagesimal o centesimal.

Hilos: 3 (raramente 5).

4.4.- DESARROLLO DE LA LIBRETA

Uso: 1.- Medida de ángulos.

2.- Medida de longitudes.3.- Cálculo del desnivel.

Orientación del instrumento: error de cierre.

Page 53: Aplicaciones Topograficas

5/8/2018 Aplicaciones Topograficas - slidepdf.com

http://slidepdf.com/reader/full/aplicaciones-topograficas 53/116

 

TAQUÍMETRO

T4 - 8

4.5.- CALCULO DEL DESNIVEL

Utilización. Cálculo del desnivel ZEA entre el punto de estación (E) y otro punto del terreno

(A).

Orden:

- Altura del aparato "i".

- Lectura de mira "m".

- Evaluación del ángulo  γ.

- Evaluación de la distancia D.

- Cálculo del desnivel ZEA.

1.- El terreno "ascendente".

tag γ =t/D → t=D tag  γ 

ZEA = t+i-m

Si se verifica i=m (cabeza de mira nula): ZEA = t

2.- El terreno es "descendente".

La expresión del desnivel obtenida, ZEA = t+i-m, es general. Así resultaría como se aprecia

en la figura:

ZEA

= t-i+mel desnivel y el término t son negativos: ZE

A = -t-i+m=-( t+i-m)

Page 54: Aplicaciones Topograficas

5/8/2018 Aplicaciones Topograficas - slidepdf.com

http://slidepdf.com/reader/full/aplicaciones-topograficas 54/116

 

TAQUÍMETRO

T4 - 9

Existen aparatos llamados AUTOCORRECTORES:

m = i

t = D tag  γ 

cos2α 

Distancia natural D'

Para obtener la distancia natural D' sería necesario inclinar la mira para lograr una perfecta

 perpendicularidad.

Así:

D'= M'N' x K 

D = D' cos  α  = K M'N' cos α 

Considerando las rectas MM' y NN' como paralelas y perpendiculares a M'N', resulta: M'N'=

MN cos  α 

La expresión de la distancia REDUCIDA es:

D = K MN cos2  α 

donde: K es la constante DIASTIMOMÉTRICA

MN es la lectura de la mira vertical

α es el ángulo de la visual con el plano horizontal.

Page 55: Aplicaciones Topograficas

5/8/2018 Aplicaciones Topograficas - slidepdf.com

http://slidepdf.com/reader/full/aplicaciones-topograficas 55/116

 

NIVEL

TT55 -- 11 

5.4.- NIVEL. FUNDAMENTO.

Goniómetro Ángulos

Niveles: visuales horizontales.

Clisímetros: visuales con una cierta pendiente.

Barómetros: diferencias de presión.

Equialtímetros: medida del desnivel.

Niveles de anteojo. Tipos:

- Niveles de plano.

- Niveles de línea.

- Niveles automáticos.

Niveles expeditos: trabajos rápidos, poco precisos.

Eje del nivel: tangente al ecuador del nivel trazada en el punto central.

Retículo: disco de vidrio con dos hilos, líneas grabadas, cruz filiar, centro del retículo (colimar).

Anteojo:

Eje óptico: el centro óptico del objetivo y del ocular.

Eje mecánico: recta de centro óptico paralelo a la de cualquier punto del tubo ocular.

Eje colimación: el centro óptico del objetivo con el centro del retículo.

5.4.1.- Niveles de plano.

Estacionados y bien vertical el eje del aparato describe en su giro un plano horizontal.

Modelos antiguos en desuso.

Tipos según la posición del anteojo y del nivel:

anteojo reversible y nivel fijo.

anteojo y nivel fijos.

Movimientos:

Page 56: Aplicaciones Topograficas

5/8/2018 Aplicaciones Topograficas - slidepdf.com

http://slidepdf.com/reader/full/aplicaciones-topograficas 56/116

 

NIVEL

TT55 -- 22 

- el del nivel.

- del retículo.

- ligero desplazamiento vertical (tornillo de elevación).

Comprobaciones:

- Eje de colimación: no varíe en puntería a diversas distancias.

Correcciones:

- Eje del nivel sea horizontal cuando la burbuja esté calada.

- Eje de colimación coincida eje óptico y eje mecánico.

- Eje de colimación paralelo al del nivel.

5.4.2.- Niveles de línea.

El eje de colimación admite ligeras inclinaciones respecto al eje de rotación aunque el eje del aparato no esté

vertical en cada visual.

5.4.3.- Niveles automáticos.

Nivelación grosera.

Mecanismo compensador: horizontal automáticamente.

5.4.4.- Miras altimétricas:

Divisiones en milímetros.

en centímetros (no doble centímetros).

doble escala de centímetros.

5.4.5.- Niveles de alta precisión.

El error de horizontalidad se reduce a límites de casi 5".

horizontalidad: eh=s/20

puntería: ep=10(1+4a/100)/a

5.5.- CAUSAS DE ERROR.

sistemáticos: construcción y ajuste.accidentales: horizontalidad: eh=s/3

puntería: ep=50(1+4a/100)/a

Page 57: Aplicaciones Topograficas

5/8/2018 Aplicaciones Topograficas - slidepdf.com

http://slidepdf.com/reader/full/aplicaciones-topograficas 57/116

 

NIVEL

TT55 -- 33 

Error Kilométrico.

125 pasos ≈ 100 metros.

Ejemplo.-

D = 50 m.

a = 30

s = 20''

horizontalidad: eh = s/20 = 20/20 = 1"

puntería: ep = 10(1+4a/100)/a = 0.73"

Error total: et = ( eh2 + ep

2 )

1/2 = ( 1" 2 + 0.73"2)1/2 = 1,24"

Error de lectura: el = etD/206265 = 1,24 x 50000/206265 = 0,3 mm.

Error kilométrico: ek = el(1000/D) 1/2 = 0,3(20) 1/2 = 1,35 mm.

Page 58: Aplicaciones Topograficas

5/8/2018 Aplicaciones Topograficas - slidepdf.com

http://slidepdf.com/reader/full/aplicaciones-topograficas 58/116

 

NIVEL

TT55 -- 11 

5.4.- NIVEL. FUNDAMENTO.

Goniómetro Ángulos

Niveles: visuales horizontales.

Clisímetros: visuales con una cierta pendiente.

Barómetros: diferencias de presión.

Equialtímetros: medida del desnivel.

Niveles de anteojo. Tipos:

- Niveles de plano.

- Niveles de línea.

- Niveles automáticos.

Niveles expeditos: trabajos rápidos, poco precisos.

Eje del nivel: tangente al ecuador del nivel trazada en el punto central.

Retículo: disco de vidrio con dos hilos, líneas grabadas, cruz filiar, centro del retículo (colimar).

Anteojo:

Eje óptico: el centro óptico del objetivo y del ocular.

Eje mecánico: recta de centro óptico paralelo a la de cualquier punto del tubo ocular.

Eje colimación: el centro óptico del objetivo con el centro del retículo.

5.4.1.- Niveles de plano.

Estacionados y bien vertical el eje del aparato describe en su giro un plano horizontal.

Modelos antiguos en desuso.

Tipos según la posición del anteojo y del nivel:

anteojo reversible y nivel fijo.

anteojo y nivel fijos.

Movimientos:

Page 59: Aplicaciones Topograficas

5/8/2018 Aplicaciones Topograficas - slidepdf.com

http://slidepdf.com/reader/full/aplicaciones-topograficas 59/116

 

NIVEL

TT55 -- 22 

- el del nivel.

- del retículo.

- ligero desplazamiento vertical (tornillo de elevación).

Comprobaciones:

- Eje de colimación: no varíe en puntería a diversas distancias.

Correcciones:

- Eje del nivel sea horizontal cuando la burbuja esté calada.

- Eje de colimación coincida eje óptico y eje mecánico.

- Eje de colimación paralelo al del nivel.

5.4.2.- Niveles de línea.

El eje de colimación admite ligeras inclinaciones respecto al eje de rotación aunque el eje del aparato no esté

vertical en cada visual.

5.4.3.- Niveles automáticos.

Nivelación grosera.

Mecanismo compensador: horizontal automáticamente.

5.4.4.- Miras altimétricas:

Divisiones en milímetros.

en centímetros (no doble centímetros).

doble escala de centímetros.

5.4.5.- Niveles de alta precisión.

El error de horizontalidad se reduce a límites de casi 5".

horizontalidad: eh=s/20

puntería: ep=10(1+4a/100)/a

5.5.- CAUSAS DE ERROR.

sistemáticos: construcción y ajuste.accidentales: horizontalidad: eh=s/3

puntería: ep=50(1+4a/100)/a

Page 60: Aplicaciones Topograficas

5/8/2018 Aplicaciones Topograficas - slidepdf.com

http://slidepdf.com/reader/full/aplicaciones-topograficas 60/116

 

NIVEL

TT55 -- 33 

Error Kilométrico.

125 pasos ≈ 100 metros.

Ejemplo.-

D = 50 m.

a = 30

s = 20''

horizontalidad: eh = s/20 = 20/20 = 1"

puntería: ep = 10(1+4a/100)/a = 0.73"

Error total: et = ( eh2 + ep

2 )

1/2 = ( 1" 2 + 0.73"2)1/2 = 1,24"

Error de lectura: el = etD/206265 = 1,24 x 50000/206265 = 0,3 mm.

Error kilométrico: ek = el(1000/D) 1/2 = 0,3(20) 1/2 = 1,35 mm.

Page 61: Aplicaciones Topograficas

5/8/2018 Aplicaciones Topograficas - slidepdf.com

http://slidepdf.com/reader/full/aplicaciones-topograficas 61/116

 

METODOS PLANIMETRICOS

T6 - 1

6.- METODOS TOPOGRAFICOS. PLANIMETRICOS.

6.1.- Agrimensura. Idea general. Método de las mediciones. Método de la descomposición en triángulos.

Método de las abscisas y ordenadas. Método de las casi perpendiculares. Método de las alineaciones.

6.2.- Coordenadas. Coordenadas cartesianas. Coordenadas generales y parciales. Convergencia de meridianos.

Cálculo de acimutes y distancias.

6.3.- Método de Radiación. Orientación de un instrumento. Desorientación de una vuelta de horizonte. Ventajas

e inconvenientes del método. Distancias máximas de radiación.

6.4.- Método Itinerario o poligonal. Diversas clases de itinerarios. Itinerario con goniómetro e itinerario con

  brújula. Influencia del error angular en los itinerarios (goniómetro, brújula). Comparación de los errores

transversales de los itinerarios con goniómetro y brújula. Error lineal. Error total. Error de cierre. Desarrollo

gráfico y cálculo de los itinerarios.

6.5.- Método de intersección. Fundamento de la intersección directa. Elipse de tolerancia. Error máximo.

Longitud máxima de las visuales. Intersección gráfica. Cálculo de coordenadas. Fundamento de la intersección

inversa.

APENDICES

1.- EJEMPLOS DE BASES DE REPLANTEO.

2.- SEÑALIZACION

3.- PLANIMETROS

Page 62: Aplicaciones Topograficas

5/8/2018 Aplicaciones Topograficas - slidepdf.com

http://slidepdf.com/reader/full/aplicaciones-topograficas 62/116

 

METODOS PLANIMETRICOS

T6 - 2

6.- METODOS PLANIMETRICOS.

Coordenadas: Cartesianas. Relativas

Polares. Absolutas

Error gráfico: 0,2 mm.Método encadenado: error de medida; error de dibujo.

n___ 0,2 √n

6.1.- AGRIMENSURA.

Método de las mediciones.

- Escala 1/M.

- Separación máxima admisible (m.): 0,0002 M

- Triangulación con cinta o cadena y jalones:

- longitud 300 a 400 m.

- ángulos mayores de 20°(25g) menores de 160° (175g).

- Superficie:

))()(( c pb pa p pS −−−=  

Descomposición en triángulos.

- Triangulación.

- Cálculo de la superficie mediante producto de (1/2) por base por altura.

Page 63: Aplicaciones Topograficas

5/8/2018 Aplicaciones Topograficas - slidepdf.com

http://slidepdf.com/reader/full/aplicaciones-topograficas 63/116

 

METODOS PLANIMETRICOS

T6 - 3

Abscisa y ordenadas.

Casi perpendiculares.

La utilización de la escuadra de agrimensor.

- Triángulo rectángulo de lados 3, 4, y 5.

Page 64: Aplicaciones Topograficas

5/8/2018 Aplicaciones Topograficas - slidepdf.com

http://slidepdf.com/reader/full/aplicaciones-topograficas 64/116

 

METODOS PLANIMETRICOS

T6 - 4

α (g) a (m)

17 32

15 53

13 94

11 182

9 404

Alineaciones

Page 65: Aplicaciones Topograficas

5/8/2018 Aplicaciones Topograficas - slidepdf.com

http://slidepdf.com/reader/full/aplicaciones-topograficas 65/116

 

METODOS PLANIMETRICOS

T6 - 5

6.2.- CONVERGENCIA DE MERIDIANOS.

Dos puntos en el paralelo 40°(medio de España) separados 10 Km. hay una convergencia de los

meridianos correspondientes de 4' 31'', apreciable con cualquier goniómetro.δ" = ∆M sen{(L1+L2)/2}

siendo las latitudes L1 y L2.

Page 66: Aplicaciones Topograficas

5/8/2018 Aplicaciones Topograficas - slidepdf.com

http://slidepdf.com/reader/full/aplicaciones-topograficas 66/116

 

METODOS PLANIMETRICOS

T6 - 6

6.3.- RADIACION.

- Fundamento.

- Orientación del aparato. Desorientación de una vuelta de horizonte.- Transporte gráfico al plano.

- Coordenadas cartesianas.

- Ventajas:

Longitud de los radios reducida.

Rapidez; cualquier clase de terreno.

Produce errores homogéneos en el sentido radial, pero no en el perimetral.

- Error máximo elipse de tolerancia: el mayor.

- perpendicularidad.

- independencia.

- Error gráfico: eg= 0,2 mm.

- Escala del plano: 1/M

- Error angular acimutal: eta (s).

El error máximo del aparato es igual al de dirección acimutal en una brújula

 pues se autoorienta; en caso de un taquímetro orientado hay que visar dos direcciones: una para radiar y otra

 para orientar (e <ea√2)

- Error transversal: eT < eta(s)D/r(s)

- Error lineal relativo: ξ - Error longitudinal: ξL < ξ D

- D= mínimo(DT,DL):

DT= eg M r(s) / eta(s)

DL= eg M / ξ 

- Error total de radiación: eR = Máximo ( eta, ξ )

Page 67: Aplicaciones Topograficas

5/8/2018 Aplicaciones Topograficas - slidepdf.com

http://slidepdf.com/reader/full/aplicaciones-topograficas 67/116

 

METODOS PLANIMETRICOS

T6 - 7

Ejemplo.- Se quiere realizar una radiación para un plano a escala 1/1.000, con una taquímetro con un anteojo de

30 aumentos, una constante estadimétrica 100, una apreciación de 20s y cuyo nivel tiene una sensibilidad de

40s.

1.- Error acimutal:

1.1.- Error de verticalidad:

ev= ss/12= 40s/12= 3s,3

1.2.- Error de dirección: con plomada óptica(2,5 cm). Tomando un valor pequeño de la distancia

de radiación: 50 m.

ed= (ee+es)r s/D= 0,025 636620/50= 318s,3

1.3.- Error de puntería:

e p= 30s(1+4a/100)/a= 30(1+4x30/100)/30= 2s,2

1.4.- Error de lectura: en el caso de una brújula se hace la lectura de las dos puntas el valor sería

el promedio y el error se divide en √2.

el= 2m/3=2x20/3= 13s,3

El error por dirección acimutal es:

ea= (ev2 +ed2 +e p2 +el2) 1/2 = ( 3s,32 + 318s,32 + 2s,22 + 13s,32)1/2 ea= 318s,6

La distancia de radiación por razón del error transversal es:

DT≤ eg M r(s)/eta(s) = 0,2 . 1000 . 636620/318,6 = 399,6 m.

2.- Error lineal:

2.1.- Error relativo en la medida de distancias, por métodos estadimétricos y con mira con

divisiones en centímetros (figura 2): ed= 0,25%=0,0025

2.2.- Error por inclinación de la mira 7g (figura 3):

em= 0,17%=0,0017

El error lineal es: ξ = ( 0,252+ 0,172)1/2= 0,30

El error longitudinal es: ξL = ξ D = eg M = 0,2 1000 = 0,2 m.

La distancia por razón del error longitudinal es: D< eg M/ ξ = 0,2/0,0030= 66,7 m.

Luego la distancia de radiación es Min (399.6, 66.7) = 66.7 m.

El error de radiación es: eR = Máximo (eta, ξ)= Max.(( 318,6/636620); 0,0030)= 0,0030

Page 68: Aplicaciones Topograficas

5/8/2018 Aplicaciones Topograficas - slidepdf.com

http://slidepdf.com/reader/full/aplicaciones-topograficas 68/116

 

METODOS PLANIMETRICOS

TT66 -- 11 

6.4.- METODO ITINERARIO.

6.4.1.- ITINERARIO O POLIGONAL

- Estaciones.

- Ejes.

6.4.2.- DIVERSAS CLASES DE ITINERARIOS

- Clases: principio-final.

Abierto.

Cerrado: principio y final conocidos: Encuadrado.

Final desconocido: Colgado.

Error de cierre.

- Elementos: Goniómetro.

Brújula.

- Aparatos: Orientados.

 No orientados.

- Estaciones: Recíprocas.

Alternas.

Page 69: Aplicaciones Topograficas

5/8/2018 Aplicaciones Topograficas - slidepdf.com

http://slidepdf.com/reader/full/aplicaciones-topograficas 69/116

 

METODOS PLANIMETRICOS

TT66 -- 22 

6.4.3.- INFLUENCIA DE LOS ERRORES ANGULARES EN LOS ITINERARIOS CON GONIOMETRO.

- Error del angular del aparato: ea - Número de tramos del itinerario: n

- Longitud del itinerario: L

- El error total es:

Page 70: Aplicaciones Topograficas

5/8/2018 Aplicaciones Topograficas - slidepdf.com

http://slidepdf.com/reader/full/aplicaciones-topograficas 70/116

 

METODOS PLANIMETRICOS

TT66 -- 33 

Ejemplo.- Sea un taquímetro con 26 aumentos, una sensibilidad de 1m y una apreciación de 20s. Error 

admisible: 0,8m.

1.- Distancia máxima: 185 m.

2.- Error angular:

2.1.- Error de verticalidad: ev=s/12=100/12=8,3s 

2.2.- Error de dirección: ed=0,025*636625/185=68,8s 

2.3.- Error de puntería: e p= 30(1+4a/100)/(a√2)

2.4.- Error de lectura: el=2m/(3√2)=9,4s 

ea=( ev2+ ed

2 + e p

2 + el

2 )

1/2 =70,0s 

3.- Error por itinerario:

et≤ l ea √2 [n (n+1) (2n+1) /6 ]1/2=

= 185 . 70/636620 √2 [n (n+1) (2n+1) /6 ]1/2≤ 0,8

n (n+1) (2n+1)_4639,9

n=12 _ et≤0,73 m.

n=13 _ et≤0,82 m.

4.- Error de distancia:

4.1.- Tanto por ciento de error en la distancia: 0,25%.

4.2.- Inclinación de la mira 7g: 0,17%

4.3.- Mediciones: 4

el=(0,252 +0,172 )1/2/√4= 0,15%=0,0015

el= 954,93s>ea 

eT ≤ l el √n=185 . 0,0015 √n ≤ 0,8

n=8 8*185 = 1480 ≈ 1500 m.

La longitud máxima para un itinerario es de 1500 m, el número de tramos a lo sumo 8 y la longitud de cada

tramo no mayor de 185 m.

Page 71: Aplicaciones Topograficas

5/8/2018 Aplicaciones Topograficas - slidepdf.com

http://slidepdf.com/reader/full/aplicaciones-topograficas 71/116

 

METODOS PLANIMETRICOS

TT66 -- 44 

6.4.4.- INFLUENCIA DE LOS ERRORES ANGULARES EN LOS ITINERARIOS CON BRUJULA.

- Error del angular del aparato: ea 

- Número de tramos del itinerario: n

- Longitud del itinerario: L

- El error total es:

Page 72: Aplicaciones Topograficas

5/8/2018 Aplicaciones Topograficas - slidepdf.com

http://slidepdf.com/reader/full/aplicaciones-topograficas 72/116

 

METODOS PLANIMETRICOS

TT66 -- 55 

Ejemplo.- Sea un brújula con 20 aumentos, una sensibilidad de 2m y una apreciación de 25m. Error admisible:

0,8m.

1.- Distancia máxima: 155 m.

2.- Error angular:

2.1.- Error de verticalidad: ev=s/12=200/12=16,7s 

2.2.- Error de dirección: ed=0,05*636625/155=205,4s 

2.3.- Error de puntería: e p= 30(1+4*20/100)/20=2,7s 

2.4.- Error de lectura: el=2*2500/(3√2)=1178,5s 

2.5.- Mediciones:2(rumbo directo e inverso)

ea=( ev2+ ed

2+ e p2+ el

2)1/2/√2= 846,0s= 846,0/636620

ea= 0,00133

3.- Error de distancia:

3.1.- Tanto por ciento de error en la distancia: 0,30%.

3.2.- Inclinación de la mira 7g: 0,17%

3.3.- Mediciones: 2

el=(0,302 +0,172 )1/2/√2= 0,24%=0,0024

e= max (el,ea)

4.- Error por itinerario:

eT≤ l e √n=155 0,0024 √n≤ 0,8

n=4 _ eT≤ 0,74 m.

n=5 _ eT≤ 0,83 m.

n=5 5*155=775 ≈ 800 m.

La longitud máxima para un itinerario es de 800 m, el número de tramos a lo sumo 5 y la longitud de cada tramo

no mayor de 155 m.

Page 73: Aplicaciones Topograficas

5/8/2018 Aplicaciones Topograficas - slidepdf.com

http://slidepdf.com/reader/full/aplicaciones-topograficas 73/116

 

METODOS PLANIMETRICOS

TT66 -- 66 

Hay que destacar que si fueran 11 tramos de 100 m, la longitud alcanzada es de 1100 m. y el error es de e T≤ 

0,80 m..

6.4.5.- COMPARACION DE LOS ERRORES TRANSVERSALES DE LOS ITINERARIOS CON

GONIOMETRO Y BRUJULA.

- Los errores máximos por dirección de:

goniómetro: eat.

 brújula: eab.

- Igualando los errores del itinerario se obtiene el número de tramos del itinerario en que da igual

el tipo de aparato:

Ejemplo.- Los errores máximos por dirección para un taquímetro es 1,5s y para una brújula es 13,5

s

; el númerode tramos en que los errores angulares totales son iguales es:

n= (1,2 13,5/1,5)-1= 9,8

Con diez tramos o más se comete menos error con la brújula y el taquímetro para menos.

Page 74: Aplicaciones Topograficas

5/8/2018 Aplicaciones Topograficas - slidepdf.com

http://slidepdf.com/reader/full/aplicaciones-topograficas 74/116

 

METODOS PLANIMETRICOS

TT66 -- 77 

6.4.6.- ERROR LINEAL

El error lineal o longitudinal será debido a la medida de distancias:

- Error relativo: ε.- Número de tramos del itinerario: n

- Longitud del itinerario: L

El error en un tramo será:

Luego, en los n tramos resulta:

6.4.7.- ERROR TOTAL.

- Los errores angulares son perpendiculares a los longitudinales.

- Los errores angulares y longitudinales son independientes.

- Conclusión: el error total es igual al mayor de los dos.

6.4.8.- ERROR DE CIERRE.

6.4.9.- DESARROLLO GRAFICO.

- Error de cierre: e-e'.

- Tolerancia del error de cierre gráfico:

T≤ 0,2 mm.√n

Page 75: Aplicaciones Topograficas

5/8/2018 Aplicaciones Topograficas - slidepdf.com

http://slidepdf.com/reader/full/aplicaciones-topograficas 75/116

 

METODOS PLANIMETRICOS

TT66 -- 88 

- Compensación gráfica:

1.- Afinidad.

1.1.- División de el segmento e-e' en partes como tramos.

1.2.- Paralelas al segmento e-e' por todas las estaciones.

1.3.- Unión ascendente desde la estación origen a la extrema.

2.- Homotecia

2.1.- Papel transparente extremos inicial(a) y final(e).

2.2.- Girar el papel entorno a (a) hasta que coincida el radio a-e, con el e-e'; éste se dividirá en

tantas partes como tramos.

2.3.- Unión de las estaciones intermedias con (a); se tomará tantas partes como tramos menos

uniéndose los extremos.

2.4.- Deshaciendo el giro a continuación.

Page 76: Aplicaciones Topograficas

5/8/2018 Aplicaciones Topograficas - slidepdf.com

http://slidepdf.com/reader/full/aplicaciones-topograficas 76/116

 

METODOS ALTIMETRICOS

T7 - 1

7.- MÉTODOS ALTIMÉTRICOS.

7.1.- Superficies de nivel. Cotas, altitudes y desniveles. Corrección por 

esfericidad. Corrección por refracción. Corrección conjunta de la esfericidad y refracción.

Clasificación de los métodos altimétricos.

7.2.- Nivelaciones geométricas: Nivelación simple (Métodos punto medio, punto

extremo, estaciones recíprocas, equidistantes, estaciones exteriores). Nivelación compuesta.

Error de cierre. Error kilométrico.

7.3.- Nivelaciones trigonométricas: Nivelación simple. Error por falta de

verticalidad de la mira. Error de cierre. Error kilométrico.

7.4.- Nivelaciones barométricas.

Page 77: Aplicaciones Topograficas

5/8/2018 Aplicaciones Topograficas - slidepdf.com

http://slidepdf.com/reader/full/aplicaciones-topograficas 77/116

 

METODOS ALTIMETRICOS

T7 - 2

7.1.- SUPERFICIES DE NIVEL.

- "esféricas".

(Topografía) - "equidistantes".

- "paralelas".

COTAS: Alturas sobre un plano de comparación.

ALTITUD: Cota sobre el nivel del mar. Nivel medio del mar en Alicante.

DESNIVEL: Diferencia de cotas.

CORRECCIÓN ORTOMÉTRICA: Falta de paralelismo entre las superficies de nivel.

Consideraciones:

- La forma de las superficies definidas como equipotenciales depende de la

aceleración de la gravedad.

- Aceleración de la gravedad no es constante.

- El movimiento de giro alrededor del eje polar: Fuerza centrífuga.

- La aceleración de la gravedad crece con la latitud.

La corrección será negativa en los recorridos en que aumente la latitud y negativa en sentidocontrario. Altitudes Ortométricas.

ORDEN DE MAGNITUD DE LA CONVERGENCIA:

Entre las superficies 0 a 100 m es de unos 50 cm. desde el Ecuador hasta los Polos.

Cotas GEOPOTENCIALES: Trabajo necesario para elevar hasta ellas la unidad de masa.

Page 78: Aplicaciones Topograficas

5/8/2018 Aplicaciones Topograficas - slidepdf.com

http://slidepdf.com/reader/full/aplicaciones-topograficas 78/116

 

METODOS ALTIMETRICOS

T7 - 3

ERROR DE ESFERICIDAD

(R+Ce)2 =R 2 +D2

Ce=D2 /(2R)

Radio de la Tierra: R = 6.370.000 m

ERROR DE REFRACCIÓN.

(R+Cr )2 = R'2 + D2 

R/R' = 2K 

Cr = D2/2R'= K D2/R En España: K ≈ 0,08 ___ R'≈ 6,25 R 

Page 79: Aplicaciones Topograficas

5/8/2018 Aplicaciones Topograficas - slidepdf.com

http://slidepdf.com/reader/full/aplicaciones-topograficas 79/116

 

METODOS ALTIMETRICOS

T7 - 4

CORRECCIÓN CONJUNTA:

Ce - Cr = (0,5-K) D2/R = 0,42 D2/R ≈ (D{Km}/4)2 

En España Ce - Cr = 0,066 D{Km}2 

D CORREC. D CORREC.

100 m 0,7 mm 1000 m 66 mm

200 m 2,6 mm 2000 m 264 mm

300 m 5,9 mm 4000 m 1.055 mm

500 m 16 mm 8000 m 4.220 mm

Page 80: Aplicaciones Topograficas

5/8/2018 Aplicaciones Topograficas - slidepdf.com

http://slidepdf.com/reader/full/aplicaciones-topograficas 80/116

 

METODOS ALTIMETRICOS

T7 - 5

7.2.- NIVELACIONES GEOMÉTRICAS.

DESNIVEL VERDADERO: Zv= Za+ Ce- Cr  

MÉTODOS

SIMPLES:

Punto medio.

Punto extremo (radial).

Estaciones recíprocas.

Estaciones equidistantes.

Page 81: Aplicaciones Topograficas

5/8/2018 Aplicaciones Topograficas - slidepdf.com

http://slidepdf.com/reader/full/aplicaciones-topograficas 81/116

 

METODOS ALTIMETRICOS

T7 - 6

Estaciones exteriores.

COMPUESTAS:

Itinerario altimétrico por el método del punto medio.

Page 82: Aplicaciones Topograficas

5/8/2018 Aplicaciones Topograficas - slidepdf.com

http://slidepdf.com/reader/full/aplicaciones-topograficas 82/116

 

METODOS ALTIMETRICOS

T7 - 7

Ejemplo.- Cálculo del error kilométrico, en un aparato de 28 aumentos, 50s sensibilidad y

distancias de 80 metros:

Error de verticalidad:

ev= 50/3= 16,7s 

Error de puntería:

e p= 150(1+4a/100)/a = 150(1+4*28/100)/28= 11,4s 

Error angular:

ea= (16,72+11,42)1/2= 20,2s 

Error de la mira:

em= 20,2*80000/636620= 2,5 mm

Error kilométrico:

ek = 2,5 (1000/80) 1/2 = 8,8 mm.

Error de cierre (3 Km): e = ek  √K = 8,8_3=15,3 mm.

TOLERANCIA:

T ≤ 70 mm. √K 

Líneas de doble nivelación(anillo):

T ≤ 30 mm. √K 

T ≤ 40 mm. √K 

El ejemplo anterior tendría la redacción distinta de prefijar el error kilométrico y se calcula el

error de horizontalidad:

ek =6 mm. ≤ [( ev2+11,42) 1/2 *80000/636620] (1000/80) 1/2 

ev2 ≤ (6*636620/80000)2*80/1000- 11,42 = 52,4

ev= 7,2''

Page 83: Aplicaciones Topograficas

5/8/2018 Aplicaciones Topograficas - slidepdf.com

http://slidepdf.com/reader/full/aplicaciones-topograficas 83/116

 

METODOS ALTIMETRICOS

T7 - 8

7.3.- NIVELACIONES TRIGONOMÉTRICAS

ZAB= t + i- m

Error en t: t = D cotag V

e't ≤ D (1+ e% /100) cotag V - D cotag V

e''t ≤ D cotag (V+ea) - D cotag V

Error en i: ei ≤ 1 cm.

Error en la mira:

em ≤ mB (b''/r'') tag(a+b)

Error en la cota:

ez=( e't2+ e''t

2+ ei2+ em

2)1/2 

Tolerancia: T= ez √2

Page 84: Aplicaciones Topograficas

5/8/2018 Aplicaciones Topograficas - slidepdf.com

http://slidepdf.com/reader/full/aplicaciones-topograficas 84/116

 

METODOS ALTIMETRICOS

T7 - 9

Ejemplo.- Un aparato de tipo T1 de 30 aumentos en su anteojo, la constante estadimétrica

100, la sensibilidad del nivel 50s, y una apreciación en el limbo vertical de 3s, en el supuesto

de que la longitud de la visual fuera 100 m, en terrenos con pendientes de 5g, y que la mira de

3 metros dividida en centímetros y de 3 m altura se sitúa con un error de 3g en su verticalidad.

Calcular la tolerancia.

1.- Error de verticalidad:

ev= 50s/3= 16,7s 

2.- Error de puntería:

e p= 150(1+4a/100)/a = 150(1+4*30/100)/30= 11,0s 

3.- Error de lectura:

el= 2m /3= 2*3/3= 2s 

4.- Error angular: ea= (16,72+11,02+22 )1/2= 20,1s 

Este error se produce tanto en puntos del terreno ascendentes como descendentes.

5.- Error en t: t = D cotag V

e't ≤ D (1+ ε% /100) cotag V - D cotag V

(Fig. 3.) ε% = 0,49

e't ≤ 100 (1+ 0,49/100) cotag(100-5)g - 100 cotag(100-5)g = 0,039 m

e't ≤ 39 mm.

e''t ≤ D cotag (V+ea) - D cotag V

e''t ≤ 100 cotag[(100-5) +ea]g -100 cotag(100-5)g =

=100 cotag(95+0,00201)-100 cotag(95)= 0,003 m= 3 mm.

Error en i:

ei ≤ 1 cm.

Error en la mira:

Page 85: Aplicaciones Topograficas

5/8/2018 Aplicaciones Topograficas - slidepdf.com

http://slidepdf.com/reader/full/aplicaciones-topograficas 85/116

 

METODOS ALTIMETRICOS

T7 - 10

em ≤ mB (b''/r'') tag(a+b)

tomando mB= 3 m

a = 5g 

 b = 3g 

em ≤ 300 (30000''/636620'') tag(5+3)= 1,8 cm.

Error en la cota:

ez= (e't2+e"t

2+ei2+em

2)1/2 = (392+32+102+182)1/2 = 44,2 mm.

Tolerancia:

Al cometer un error ez en sendas ZAB y ZB

A la tolerancia sería:

T ≤ ez √2 mm.

T ≤ ez √2 = 44,2 √2 = 62,5 mm. ≈ 63 mm.

Page 86: Aplicaciones Topograficas

5/8/2018 Aplicaciones Topograficas - slidepdf.com

http://slidepdf.com/reader/full/aplicaciones-topograficas 86/116

 

METODOS ALTIMETRICOS

T7 - 11

7.4.- NIVELACIONES BAROMÉTRICAS.

Presión atmosférica.

Page 87: Aplicaciones Topograficas

5/8/2018 Aplicaciones Topograficas - slidepdf.com

http://slidepdf.com/reader/full/aplicaciones-topograficas 87/116

 

LEVANTAMIENTOS ALTIMETRICOS

T9 - 1

9.- LEVANTAMIENTO ALTIMÉTRICO.

9.1.- Relieve del terreno.

9.2.- Redes del levantamiento altimétrico.

9.3.- Dibujo del plano.

Page 88: Aplicaciones Topograficas

5/8/2018 Aplicaciones Topograficas - slidepdf.com

http://slidepdf.com/reader/full/aplicaciones-topograficas 88/116

 

LEVANTAMIENTOS ALTIMETRICOS

T9 - 2

9.1.- RELIEVE DEL TERRENO

La línea de máxima pendiente es el gradiente de la superficie

Divisoria

VaguadaElevación

Hoya

Collado / puerto - Divisoria / vaguada

9.2.- REDES DEL LEVANTAMIENTO ALTIMÉTRICO

Error de altitud de un punto interpolado

Error altimétrico ez(medidas)

Error de flecha diferencia entre la aproximación lineal y el terreno real. Es independiente del error

altimétrico.

Error de altitud de la curva:

ec = ef 2 + ez

2

Error de interpolación: e la separación (e/2 ; e/4)

Error total:

etotal = ei2 + ec

2 = ei2 + ef 

2 + ez2

Dando valores:

e = e2

2 + e4

2 + e4

2 = 0,6 e  e = e

42 + e

42 + e

42 = 0,4 e  

9.3.- DIBUJO DEL PLANO

Curvas de nivel

- Líneas cerradas

- El número de curvas interrumpidas en el papel es par

- Una curva de nivel no puede cortarse, ya que asciende o desciende.

- No se cortan ni se cruzan

- Existe dos curvas de igual cota ni par de líneas de nivel

- Divisoria de collado por un punto

- Acantilados o escarpados utilizar signo convencional

Page 89: Aplicaciones Topograficas

5/8/2018 Aplicaciones Topograficas - slidepdf.com

http://slidepdf.com/reader/full/aplicaciones-topograficas 89/116

 

ELECCION DE METODOS E INSTRUMENTOS EN LOS LEVANTAMIENTOS

T13 - 1

13.- ELECCIÓN DE MÉTODOS E INSTRUMENTOS EN LOS LEVANTAMIENTOS.

13.1.- SUPUESTO REAL.

13.2.- DISTANCIA MÁXIMA DE RADIACIÓN.

13.3. LIMITACIÓN EN LOS ITINERARIOS CON BRÚJULA.

13.4. LIMITACIÓN EN LOS ITINERARIOS CON TAQUÍMETRO.

13.5. CARACTERÍSTICAS DE LA TRIANGULACIÓN

13.6. NIVELACIÓN POR ALTURAS.

13.7. RECAPITULACIÓN FINAL DE ERRORES. TOLERANCIAS Y

AJUSTES

Page 90: Aplicaciones Topograficas

5/8/2018 Aplicaciones Topograficas - slidepdf.com

http://slidepdf.com/reader/full/aplicaciones-topograficas 90/116

 

ELECCION DE METODOS E INSTRUMENTOS EN LOS LEVANTAMIENTOS

T13 - 2

13.- ELECCIÓN DE MÉTODOS E INSTRUMENTOS EN LOS LEVANTAMIENTOS.

Los errores no deben sobrepasar los 0,2 mm. del plano a la escala correspondiente. Para

realizar un repaso de los errores, a estudiar, se pondrá un supuesto real.

13.1. SUPUESTO REAL.

Se trata de realizar un levantamiento a escala 1/5.000 de una zona de terreno ligeramente

ondulado y que abarca una superficie de 30.000 Has. La equidistancia elegida es de 1 m. y se

prevén pendientes de las visuales del orden de los 7g. En cuanto a los instrumentos de que se

dispone responden a los tipos siguientes:

- Teodolito de un sólo índice y de 2'' de apreciación, tanto acimutal como vertical,

nivel general de 50'' de sensibilidad y anteojo de 28 aumentos.

- Taquímetro de un sólo índice y de 20'' de apreciación, sensibilidad de 1' en su

nivel general y del eclímetro, y 26 aumentos en el anteojo.

- Brújula taquimétrica de 25' de apreciación acimutal y de 2' en su limbo vertical.

La sensibilidad del nivel es de 2' y 20 aumentos del anteojo.

- Nivel de 50'' de sensibilidad con anteojo de 26 aumentos.

13.2. DISTANCIA MÁXIMA DE RADIACIÓN.

13.2.1. Para poder concretar el error se hace preciso fijar la condición de que en la

superposición del hilo del retículo sobre la mira se pueda llegar a apreciar su media división.

Llamando a la división de la mira "d", el error máximo posible en una lectura será:

323

2 d d = (1)

por lo que en el segmento de mira comprendido entre los dos hilos se producirá un error de:

3

2d 

(2)

y si es "K" la constante estadimétrica, el error absoluto con que resulta la distancia es:

Page 91: Aplicaciones Topograficas

5/8/2018 Aplicaciones Topograficas - slidepdf.com

http://slidepdf.com/reader/full/aplicaciones-topograficas 91/116

 

ELECCION DE METODOS E INSTRUMENTOS EN LOS LEVANTAMIENTOS

T13 - 3

K d 

e D 32≤ (3)

y el error relativo en tanto por ciento, será:

K  D

d  D 3

1002≤ε  (4)

El procedimiento más adecuado para conocer la distancia D es determinarla

experimentalmente. En la figura (1), que se utilizará, se representan los valores medios de

tales distancias en función de los aumentos del anteojo y de los tipos usuales de divisiones de

mira.

Figura (1)

En la figura (2) se deduce el tanto por ciento de error que, como máximo, puede afectar a las

distancias para una constante estadimétrica K=100, pero que puede usarse, indistintamente,

para cualquier otra, ya que existe proporcionalidad, y así, para K = 200, los errores serán el

doble de los de la figura. Los valores de la misma se han obtenido a partir de la figura (1) con

la expresión (4).

Figura (2)

Page 92: Aplicaciones Topograficas

5/8/2018 Aplicaciones Topograficas - slidepdf.com

http://slidepdf.com/reader/full/aplicaciones-topograficas 92/116

 

ELECCION DE METODOS E INSTRUMENTOS EN LOS LEVANTAMIENTOS

T13 - 4

La falta de verticalidad de la mira implica un error adicional que crece con el ángulo

pendiente de la visual. En la figura (3) puede deducirse el porcentaje de error para un 1g de

inclinación de la mira, existiendo también, prácticamente, proporcionalidad entre errores e

inclinaciones.

Figura (3)

La radiación se realiza con la brújula cuyo anteojo tiene 20 aumentos a unas distancias

máximas de 155 m y 240 m, según el tamaño de las divisiones de la mira (figura 1), a las que

corresponde para K=100, errores máximos de 0,30% y 0,39% (figura 2), respectivamente. A

estos hay que añadir el derivado de la inclinación de la mira, por lo que suponiendo que ésta

sea de 1g, como se prevén ángulos de pendiente de 7g, dicho error será (figura 3) de 0,17%.

En su consecuencia, los errores totales serán (5):

0034,0%34,017,030,0:1 22 ==+cmdemira  

0043,0%43,017,039,0:2 22 ==+cmdemira  

que a aquellas distancias máximas representan unos errores en las mismas de (6):

m xcmdemira 53,00034,0155:1 =  

m xcmdemira 03,10043,0240:2 =  

Estos valores indican que el empleo de las miras de doble centímetro produce errores

demasiado grandes, pues incluso a la distancia tope de 240 m. llega a rebasar de 1 m. que esel gráfico de 0,2 mm a la escala 1/5.000 del levantamiento. Podría pensarse en acortar dicha

Page 93: Aplicaciones Topograficas

5/8/2018 Aplicaciones Topograficas - slidepdf.com

http://slidepdf.com/reader/full/aplicaciones-topograficas 93/116

 

ELECCION DE METODOS E INSTRUMENTOS EN LOS LEVANTAMIENTOS

T13 - 5

distancia para disminuir el error, pero entonces se perdería la ventaja que representa una

radiación de esa longitud, cuando el error relativo seguiría siendo elevado. De aquí, que se

considere más conveniente el uso de las miras divididas en centímetros y fijándose así un

primer valor límite de la radiación en 155 m.

13.2.2. El segundo de tales valores límites resulta del error planimétrico que se

deriva del error angular del instrumento que se va a utilizar, para lo que se procederá

empezando por determinar el error por dirección de la brújula. Se supone un error de 0,05 m

para el conjunto de estación y señal, la distancia será de 155 m (que es la que ya se conoce), y

que las lecturas se harán con una sola punta de la aguja. En estas circunstancias, se tendrá (7):

"1712200

12==≤

sev

 

"205"636620155

05,0" ==

+≤ r 

 D

eee se

d   

"3100

20.41

20

"30

100

41

"30=⎟

 ⎠

 ⎞⎜⎝ 

⎛ +=⎟

 ⎠

 ⎞⎜⎝ 

⎛ +≤

A

 Ae p  

"1667"2500

3

2

3

2==≤ ael  

"16801667320517 22222222 =+++=+++≤ l pad vata E  E  E  E  E   

Para cada unas de las redes se deben fijar un error máximo que sea inferior al gráfico, para

que como consecuencia del revertido de los errores de unas redes sobre otras no se rebase el

límite. Se tomará como tope el 80% del error, en el supuesto que se estudia es 0,80 m. La

máxima distancia D, será aquélla para la que se verifique (8):

m D D 80,000264,0

636620

1680≤=  

m D 30300264,0

80,0=≤  

límite superior a los 155 m de la percepción de la media división de la mira.

13.2.3. El tercero de los límites es el derivado de los errores altimétricos de la

radiación, mayor que el planimétrico. Así (9):

"6732003 ==≤ sev  

Page 94: Aplicaciones Topograficas

5/8/2018 Aplicaciones Topograficas - slidepdf.com

http://slidepdf.com/reader/full/aplicaciones-topograficas 94/116

 

ELECCION DE METODOS E INSTRUMENTOS EN LOS LEVANTAMIENTOS

T13 - 6

"14100

20.41

20

"150

100

41

"150=⎟

 ⎠

 ⎞⎜⎝ 

⎛ +=⎟

 ⎠

 ⎞⎜⎝ 

⎛ +≤

A

 Ae p

 

"133"2003

2

3

2==≤ ae

"1501331467 222222 =++=++≤ l pcvctcE  E  E  E   

Para el cálculo de los errores independientes que afectan al desnivel se admitirá un error en la

altura de instrumento de 1 cm., que se visa a una altura de 2 m y con pendiente de la visual de

7g e inclinación de mira de 1g, por lo que se tendrá (10):

( )[ ] ( ) Dtagtag Dtagtag De gg

t 000375,0770034,011´ =−+=−+≤ α α ε   

( )[ ] [ ] Dtagtag Dtagetag Degg

at  000238,070150,7" =−=−+≤ α α   mei 01,0≤  

( ) ( ) mtagtagr 

me

g

m 004,08"636620

"10000.2

"==+≤ β α 

 β  

Dado que el error total no debe rebasar, al igual que planimétricamente, del 80% del límite, y

éste es la cuarta parte de la equidistancia, se tendrá (11):

2222222222 004,001,0000238,0000375,0 +++=+++≤ D D E  E  E  E  E  l pad vata  

meea 20,04

1

100

80=≤  

039884,0000000197,0 2 ≤ D  

m D 450000000197,0

039884,0=≤  

distancia que como cabía esperar es mayor que los 303 m del límite planimétrico.

13.2.4. De los tres valores calculados, el más corto señala la máxima distancia de

radiación, 155 m, y el error máximo con ella de 0,53 m.

Page 95: Aplicaciones Topograficas

5/8/2018 Aplicaciones Topograficas - slidepdf.com

http://slidepdf.com/reader/full/aplicaciones-topograficas 95/116

 

ELECCION DE METODOS E INSTRUMENTOS EN LOS LEVANTAMIENTOS

T13 - 7

13.3. LIMITACIÓN EN LOS ITINERARIOS CON BRÚJULA.

Las poligonales con brújula habrán de observarse por estaciones recíprocas pues el de

alternas, incluso en su variante de punto de control, no garantiza la precisión necesaria par un

trabajo en escala 1/5.000, además del riesgo que representa por la posibilidad de cometer

equivocaciones inadvertidas. El operar por recíprocas implica que los rumbos y las distancias

se medirán dos veces, en sentido directo y recíproco, y en cuanto a los rumbos se leerán,

además, con las dos puntas de la aguja.

El error final de un itinerario con brújula, como consecuencia de los errores angulares, viene

dado por la expresión (12):

nel a  

y el derivado de los errores en las distancias, tiene como valor (13):

nl ε   

El error total de la poligonal será igual al mayor de los dos, y teniendo ambos una expresión

análoga, la superioridad de uno sobre otro sólo dependerá de la relación que exista entre ea y

e. En cuanto al valor de ea debe corregirse el cálculo ya que los rumbos se van a leer con las

dos puntas de la aguja, siendo el error de lectura (14):

"1179"25003

2

2

1

3

2

2

1==≤ ael  

(15):

"11971179320517 22222222 =+++=+++≤ l pad vata E  E  E  E  E   

Como se miden los rumbos directo y recíproco, y se promedian, en definitiva resulta (16):

"00133,0

636620

1179

2

1=≤ae  

El error relativo e, para una medida simple resultó ser de 0,0034, pero al tomar el valor medio

de la distancia directa y recíproca, se obtiene (17):

"00240,02

0034,0=≤ε   

Evidentemente e es mayor que ea, por lo que el error total vendrá dado por la expresión (13) y

tendrá que cumplirse que al cabo de los n tramos no se rebase dicho error de 0,80 m (18):

mnnle B 80,0.00240,0.155 ≤=≤ ε   

Page 96: Aplicaciones Topograficas

5/8/2018 Aplicaciones Topograficas - slidepdf.com

http://slidepdf.com/reader/full/aplicaciones-topograficas 96/116

 

ELECCION DE METODOS E INSTRUMENTOS EN LOS LEVANTAMIENTOS

T13 - 8

15,200240,0.155

80,0=≤

mn  

n = 4,6 ≈ 5 tramos.

Las poligonales de brújula quedan pues limitadas a un máximo de 5 tramos, lo que representa

un desarrollo total de (19):

5 x 155 = 775 m

que es el ancho que habrán de tener las mallas de la red intermedia que constituye el apoyo de

la de relleno. El error total que corresponde a dichas poligonales, a los efectos de la

recapitulación final, es (20):

m83,05.00240,0.155 =  

Si los tramos de los itinerarios se tomasen menores de 155 m (p.e. 100 m) se llegaría a la

conclusión de que se podrían tener 11 tramos, con un desarrollo de 1.100 m, que señalaría un

nuevo ancho de las mallas de la correspondiente red intermedia. La disminución del trabajo

de taquímetro que ello pudiera representar es engañosa; la cantidad de trabajo que hay que

realizar para establecer la red de relleno es siempre superior al de la intermedia.

Page 97: Aplicaciones Topograficas

5/8/2018 Aplicaciones Topograficas - slidepdf.com

http://slidepdf.com/reader/full/aplicaciones-topograficas 97/116

 

ELECCION DE METODOS E INSTRUMENTOS EN LOS LEVANTAMIENTOS

T13 - 1

13.4. LIMITACIÓN EN LOS ITINERARIOS CON TAQUÍMETRO.

13.4.1. Las poligonales con taquímetro habrán de observarse por el método de

Moinot (las observaciones en las diversas estaciones se realizan visando la estación de atrás

en posición C.D. del círculo, primeramente, anotando las medidas de distancia y las angulares

acimutales y verticales; y seguidamente se visa la estación de delante) midiendo las distancias

por cuadruplicado (en las posiciones de C.D. y C.I. al aplicar la regla de Bessel para los

ángulos y en el sentido directo e inverso, respectivamente) mejorándose la precisión

estadimétrica y podrán alargarse estos itinerarios, en los que la longitud de los tramos queda

fijada en 185 m. pues la distancia máxima para la que con los 26 aumentos del anteojo (fig.1)

puede apreciarse la media división de la mira. Se admite un error de 0,02 m para los errores

de estación y señal, y habida cuenta de las restantes características del taquímetro a emplear,

el error por dirección acimutal, resultará (21):

"812

100

12==≤

sev  

"69"636620185

02,0" ==

+≤ r 

 D

eee se

d  

"22

1100

26.4126

"3010041"30 =⎟

 ⎠ ⎞⎜

⎝ ⎛  +=⎟

 ⎠ ⎞⎜

⎝ ⎛  +≤ A

 Ae p  

"9"203

2

2

1

3

2

2

1==≤ ael  

"7092698 22222222 =+++=+++≤ l pad vataE  E  E  E  E   

El error final de un itinerario con taquímetro, como consecuencia de los errores angulares,

viene dado por la expresión (22):

( )( ) ( )( )m

nnnnnneleaT 

80,06

121.2.

636620

70.185

6

121.2.. ≤

++=

++≤  

( )( ) 9,4639121 ≤++ nnn  

n = 12,8 ≈ 13 tramos.

Las poligonales de taquímetro quedan pues limitadas a un máximo de 13 tramos.

Para saber el límite de los errores de las distancias se obtiene el error relativo (fig.2) e =

0,25% y el error por inclinación de la mira es 0,17% (23):

Page 98: Aplicaciones Topograficas

5/8/2018 Aplicaciones Topograficas - slidepdf.com

http://slidepdf.com/reader/full/aplicaciones-topograficas 98/116

 

ELECCION DE METODOS E INSTRUMENTOS EN LOS LEVANTAMIENTOS

T13 - 2

0015,0%15,04

17,025,0 22

==+

 

El límite por razón de los errores longitudinales se obtiene de la expresión (24):

mnnnele aT  80,0.2775,0.0015,0.185.. ≤==≤  

n = 8,3 ≈ 8 tramos.

que por ser inferior al anterior de 13 tramos señala el tope máximo permitido, al cabo de los

cuales el error podrá llegar a ser (25):

meT  78,08.0015,0.185 =≤  

A su vez, los 8 tramos con sus 185 metros de longitud determinan la separación máxima quepodrá existir entre los vértices de la triangulación, es decir, el lado de la misma, que resultará

(26):

8 x 185 = 1.480 m ≈ 1.500 m

13.4.2. Límite de los itinerarios por los errores altimétricos. Las redes

altimétricas, previas a la de relleno, pudieran ser suficiente con una red de nivelacióntrigonométrica para envolver toda la zona, pero si esto no es posible deberá realizarse una

nivelación geométrica cuyas estaciones serán los puntos de arranque y cierre de las

nivelaciones trigonométricas. Se necesita determinar la longitud máxima que pueden tener

estas nivelaciones y para ello se empieza por calcular el error de dirección vertical

correspondiente al taquímetro(27):

"33

3

100

3

==≤s

ev  

"82

1

100

26.41

26

"150

100

41

"150=⎟

 ⎠

 ⎞⎜⎝ 

⎛ +=⎟

 ⎠

 ⎞⎜⎝ 

⎛ +≤

A

 Ae p

 

"9"203

2

2

1

3

2

2

1==≤ ae

l  

"359833 222222 =++=++≤ l pcvctcE  E  E  E   

Para el cálculo del error en el desnivel de cada tramo se sigue el siguiente razonamiento:

como el error relativo con que se obtienen las longitudes promediadas de los tramos es de0,0015(23) y los ei y em se consideran iguales a los de la brújula(10), resulta:

Page 99: Aplicaciones Topograficas

5/8/2018 Aplicaciones Topograficas - slidepdf.com

http://slidepdf.com/reader/full/aplicaciones-topograficas 99/116

 

ELECCION DE METODOS E INSTRUMENTOS EN LOS LEVANTAMIENTOS

T13 - 3

( )[ ] ( )[ ] 031,0770015,011851´ =−+=−+≤ gg

t tagtagtagtag De α α ε   

( )[ ] [ ] 010,070150,7185" =−=−+≤ gg

at tagtagtagetag De α α   

mei 01,0≤  

( ) ( ) mtagtagr 

me g

m 004,08"636620

"10000.2

"==+≤ β α 

 β  

meeeeemit t  z

034,0004,001,0010,0031,0"´ 22222222 =+++=+++≤  

por lo que el desnivel promedio de cada tramo podrá tener un error de:

2

034,0 

Si se desea que el error al acabo de n tramos de nivelación trigonométrica no rebase de 0,20

m, que es el límite para este caso, se tendrá que verificar:

mn 20,02

034,0≤  

3,8≤n  

n ≈ 69 tramos, que representa una longitud de: 69 x 185 = 12.765 m

Este valor demuestra la necesidad de establecer una red de nivelación geométrica, ya que para

abarcar una superficie de 30.000 Has., aún en el supuesto de representar una forma circular se

necesitaría un desarrollo de 61.400 m que es una distancia muy superior a aquélla.

13.4.3. Itinerarios secundarios.

Puesto que los vértices de la triangulación van a estar separados 1.500 m(26) y para los

itinerarios con brújula se necesitan mallas de 775 m (19), es lógico que no todos los

itinerarios de taquímetro podrán ser primarios, esto es, con comienzo y final en dichos

vértices. Debe pensarse en la observación de itinerarios secundarios y se hace necesario

calcular el error que en ellos se puede producir. Estas poligonales, al no tener que establecerse

entre vértices, podrán tener un número menor de tramos, que se finjan en 5. El error final para

los secundarios será:

185 . 0,0015 . √5 = 0,62 m

Page 100: Aplicaciones Topograficas

5/8/2018 Aplicaciones Topograficas - slidepdf.com

http://slidepdf.com/reader/full/aplicaciones-topograficas 100/116

 

ELECCION DE METODOS E INSTRUMENTOS EN LOS LEVANTAMIENTOS

T13 - 1

13.5. CARACTERÍSTICAS DE LA TRIANGULACIÓN

13.5.1. Se calcula el error de dirección acimutal del teodolito, suponiendo un error de estación y

señal de 0,05 m. y que se aplicará la regla de Bessel (33):

"412

50

12==≤

sev  

"21"6366201500

05,0" ==

+≤ r 

 D

eee se

d   

"22

1

100

26.41

26

"30

100

41

"30=⎟

 ⎠

 ⎞⎜⎝ 

⎛ +=⎟

 ⎠

 ⎞⎜⎝ 

⎛ +≤

A

 Ae p  

"1"2

3

2

2

1

3

2

2

1==≤ ael  

"2112214 22222222 =+++=+++≤ l pd va eeeee  

Como se medirán y compensarán de error de cierre los tres ángulos de cada triángulo, el error por dirección

observada puede reducirse en un 80%(34):

"8,16100

8021 =≤a

e  

Para alcanzar los bordes de la zona desde el centro de la misma, que es donde estará medida la base, se

necesitarán, al menos (fig. 4), 13 triángulos encadenados ya que así se conseguiría un radio de(35):

7 x AB = 7 x 1.500 = 10.500 m

con lo que se puede cubrir una superficie de 34.600 Has.

Al cabo de un encadenamiento de ese número de triángulos, los errores angulares producen finalmente un error

de (36):

( )( )m

nnn

el a 13,13

6

27.14.13.

"636620

"8,16.15003

6

121.

". =+=+

++ 

inadmisible, pues excede del permitido para todo levantamiento y está clara la necesidad de dos órdenes de

triangulación: una principal y otra secundaria.

La separación entre los vértices de la secundaria no debe rebasar los 1500 m. Los lados de la

triangulación principal están limitados por la dificultad de visuales mayores de 5.000 m, lo que supone en este

caso 5 triángulos secundarios y un lado de 4.500 m de la triangulación principal.

Page 101: Aplicaciones Topograficas

5/8/2018 Aplicaciones Topograficas - slidepdf.com

http://slidepdf.com/reader/full/aplicaciones-topograficas 101/116

 

ELECCION DE METODOS E INSTRUMENTOS EN LOS LEVANTAMIENTOS

T13 - 2

13.5.2.1. Error de la triangulación secundaria. Según lo expuesto por el encadenamiento de 5

triángulos se producirá un error de (37):

( )( )m

nnn

el a 30,03

6

11.6.5.

"636620

"8,16.15003

6

121.

". =+=+

++ 

13.5.2.2. Error de la triangulación principal.

El error de dirección se disminuirá al ser más larga la visual y, por tanto, el total de la triangulación (38):

"7"6366204500

05,0" ==

+≤ r 

 D

eee se

d   

"4,81274 22222222 =+++=+++≤ l pd va eeeee  

valor que para los ángulos compensados de cierre quedará reducido a (39):

"7,6"4,8.100

80=  

Como consecuencia de esto los errores angulares suponen uno final de (40):

Page 102: Aplicaciones Topograficas

5/8/2018 Aplicaciones Topograficas - slidepdf.com

http://slidepdf.com/reader/full/aplicaciones-topograficas 102/116

 

ELECCION DE METODOS E INSTRUMENTOS EN LOS LEVANTAMIENTOS

T13 - 3

( )( )m

nnn

el a 36,03

6

11.6.5.

"636620

"7,6.45003

6

121.

". =+=+

++ 

Para calcular el error que se comete como consecuencia de la base, se supondrá que ésta se mide con estadía

horizontal, fraccionándola en trozos de 30 m ó 40 m, con lo que se puede conseguir un error relativo de1/50.000. Así pues el error por esta causa será (41):

m ABn

27,050000

1.4500.

2

15..

2

1=

+=

+ε   

13.6. NIVELACIÓN POR ALTURAS.

Se dispone del nivel descrito para realizar esta nivelación de apoya a otra trigonométrica o por pendientes. Se

comprueba la precisión del nivel determinando el error por visual que le corresponde y que será (42):

"7,163

503

==≤ sev  

"8,11100

26.41

26

"150

100

41

"150=⎟

 ⎠

 ⎞⎜⎝ 

⎛ +=⎟

 ⎠

 ⎞⎜⎝ 

⎛ +≤

A

 Ae p  

"4,208,117,16 2222 =+=+≤ pvaeee  

En el terreno ligeramente ondulado se puede admitir una distancia media de 30 m. desde el nivel a la mira, es

decir, un error en la altura de la mira de (43):

mme m 96,030000636620

"4,20´ =≤  

Por la inclinación de la mira, en el supuesto de visarla a una altura de 2 metros(44):

( ) mmtagtagr 

me

g

m 49,01"636620

"10000.2000

"

"" ==≤ β 

 β  

y en la nivelada de 30 m se producirá un error total de (45):

mmem 08,149,096,0 22 =+≤  

El error kilométrico correspondiente será consecuencia del número de niveladas de aquella longitud que es

preciso observar para alcanzar un kilómetro:

mmek  24,630

100008,1 =≤  

que representa una precisión más que suficiente. Como ejemplo si se admite un desarrollo de nivelación de 100

Km, con ellos se podrían circunvalar unas 80.000 Has. Y, aún así, el error que se cometería tendría un valor de:

mmm 06,04,6210024,6 ==  

bastante menor que el permitido de 0,20 m

Page 103: Aplicaciones Topograficas

5/8/2018 Aplicaciones Topograficas - slidepdf.com

http://slidepdf.com/reader/full/aplicaciones-topograficas 103/116

 

ELECCION DE METODOS E INSTRUMENTOS EN LOS LEVANTAMIENTOS

T13 - 1

13.7. RECAPITULACIÓN FINAL DE ERRORES. TOLERANCIAS Y AJUSTES.

Se han calculado los errores que pueden afectar a cada una de las redes del levantamiento, quedando ahora por

estudiar si el efecto acumulado de los mismos sobre el punto radiado hace que se rebase o no del tope, en estecaso de 1 m.

El error de posición relativa de un punto es el error que tiene respecto de la red principal en que se enmarca el

levantamiento. Este error será máximo en la parte central de la figura encuadrada, e igual a la componente

cuadrática de la mitad del error propio de aquella figura y del error máximo de posición relativa que corresponda

a los puntos de la red que la encuadran.

El error de posición absoluta de un punto es el que tiene respecto de su verdadera posición del terreno, y

evidentemente, inferior al límite gráfico.

La tolerancia en el cierre o ajuste de una figura encuadrada entre dos puntos conocidos es la componente

cuadrática de los errores máximos de posición relativa de ambos puntos y del error propio de la figura.

Fase Error (m)

Medida de la base.......................... 0,27 (41)

Ángulos de la triangulación principal...... 0,36 (40)

Ángulos de la triangulación secundaria..... 0,30 (37)

Itinerarios primarios de taquímetro........ 0,78 (25)Itinerarios secundarios de taquímetro...... 0,62 (32)

Itinerarios de brújula..................... 0,83 (20)

Radiación.................................. 0,53 (6)

13.7.1. Triangulación principal

13.7.1.1. Tolerancia en el cierre. No corresponde determinarla, ya que dicha triangulación no es figura

encuadrada entre puntos conocidos.

13.7.1.2. Error máximo de posición relativa: el semieje mayor de la elipse de error (48):

m

sensen

e La

g

a 09,0

2

676666"636620

"7,6.4500

2

."´===

α 

 

13.7.1.3. Error máximo de posición absoluta: el error total es igual a la componente cuadrática de los errores

debidos a la mediada de la base y de los ángulos (49):

m45,036,027,0 22 =+  

Page 104: Aplicaciones Topograficas

5/8/2018 Aplicaciones Topograficas - slidepdf.com

http://slidepdf.com/reader/full/aplicaciones-topograficas 104/116

 

ELECCION DE METODOS E INSTRUMENTOS EN LOS LEVANTAMIENTOS

T13 - 2

13.7.2. Triangulación secundaria.

13.7.2.1. Tolerancia en el cierre. Puesto que los dos vértices de la triangulación principal entre los que se ajusta,

uno no tiene error de posición relativa y el otro puede tener un valor máximo de 0,09 m., resulta (50):

m31,030,009,0 22 =+  

13.7.2.2. Error máximo de posición relativa (51):

m17,02

30,009,0

22 =⎟

 ⎠

 ⎞⎜⎝ 

⎛ +  

13.7.2.3. Error máximo de posición absoluta (52):

m48,045,017,0 22 =+  

13.7.3. Itinerarios primarios.

Los cálculos siguientes están referidos al caso más desfavorable, en el que tanto el vértice de salida como de

llegada pertenecen a la triangulación secundaria.

13.7.3.1. Tolerancia en el cierre. (53):

m82,078,017,017,0 222 =++  

13.7.3.2. Error máximo de posición relativa (54):

m43,02

78,017,0

22 =⎟

 ⎠

 ⎞⎜⎝ 

⎛ +  

13.7.3.3. Error máximo de posición absoluta (55):

m62,045,043,0 22 =+  

13.7.4. Itinerarios secundarios.

Los cálculos siguientes están referidos al caso más desfavorable, en el que tanto el vértice de salida como dellegada pertenecen a itinerarios primarios.

13.7.4.1. Tolerancia en el cierre. (56):

m87,062,043,043,0 222 =++  

13.7.4.2. Error máximo de posición relativa (57):

m53,02

62,043,0

22 =⎟

 ⎠

 ⎞⎜⎝ 

⎛ +  

Page 105: Aplicaciones Topograficas

5/8/2018 Aplicaciones Topograficas - slidepdf.com

http://slidepdf.com/reader/full/aplicaciones-topograficas 105/116

 

ELECCION DE METODOS E INSTRUMENTOS EN LOS LEVANTAMIENTOS

T13 - 3

13.7.4.3. Error máximo de posición absoluta (58):

m70,045,053,0 22 =+  

13.7.5. Itinerarios con brújula.

Tanto el vértice de salida como de llegada pertenecen a itinerarios secundarios de taquímetro.

13.7.5.1. Tolerancia en el cierre. (59):

m12,183,053,053,0 222 =++  

13.7.5.2. Error máximo de posición relativa (60):

m67,02

83,053,0

22 =⎟

 ⎠

 ⎞⎜⎝ 

⎛ +  

13.7.5.3. Error máximo de posición absoluta (61):

m81,045,067,0 22 =+  

13.7.6. Puntos radiados.

13.7.6.1. Tolerancia en el cierre.

No cabe determinar la tolerancia en el cierre, pues los puntos radiados no constituyen figura escuadrada, y por

no realizarse ninguna compensación, la posición relativa es la totalidad del error propio.

13.7.6.2. Error máximo de posición relativa (62):

m85,067,053,0 22 =+  

13.7.6.3. Error máximo de posición absoluta (63):

m96,045,085,0 22 =+  

Page 106: Aplicaciones Topograficas

5/8/2018 Aplicaciones Topograficas - slidepdf.com

http://slidepdf.com/reader/full/aplicaciones-topograficas 106/116

 

PRESUPUESTO DE TRABAJOS TOPOGRAFICOS

T14 - 1

14.- PRESUPUESTO DE TRABAJOS TOPOGRÁFICOS

14.1. DIFICULTAD DE CALCULAR EL PRESUPUESTO

14.2. TRABAJOS NECESARIOS Y RENDIMIENTOS MEDIOS

14.2.1. Trabajos de triangulación

14.2.2. Trabajos de taquímetro

14.2.3. Trabajos de brújula

14.2.4. Trabajos de nivelación por alturas

14.2.5. Pérdidas

14.3. EJEMPLO.

14.3.1. Triangulación

14.3.2. Itinerarios con taquímetro

14.3.3. Itinerarios con brújula

14.3.4. Nivelaciones geométricas.

14.3.5.Resumen de los trabajos

14.4. PRESUPUESTO PARA LOS TRABAJOS DE CAMPO.

14.5. ORGANIZACIÓN DE LOS TRABAJOS DE GABINETE.

14.6. TRABAJOS DE GABINETE.

14.6.1. Cálculos:

14.6.2. Dibujo:

14.6.3. Soporte.

14.6.4. Soporte magnético del dibujo.

14.6.5. Tinta y desgaste del material de dibujo.

14.7. PRESUPUESTO PARA LOS TRABAJOS DE GABINETE.

14.8. PRESUPUESTO TOTAL

Page 107: Aplicaciones Topograficas

5/8/2018 Aplicaciones Topograficas - slidepdf.com

http://slidepdf.com/reader/full/aplicaciones-topograficas 107/116

 

PRESUPUESTO DE TRABAJOS TOPOGRAFICOS

T14 - 2

APÉNDICES

1.- Tarifas de alquiler de equipos topográficos

2.- Tarifas de honorarios profesionales

Page 108: Aplicaciones Topograficas

5/8/2018 Aplicaciones Topograficas - slidepdf.com

http://slidepdf.com/reader/full/aplicaciones-topograficas 108/116

 

PRESUPUESTO DE TRABAJOS TOPOGRAFICOS

T14 - 3

14.1. DIFICULTAD DE CALCULAR EL PRESUPUESTO

Escala, terreno, clima, vegetación, _

14.2. TRABAJOS NECESARIOS Y RENDIMIENTOS MEDIOS

14.2.1. Trabajos de triangulación

14.2.2. Trabajos de taquímetro

14.2.3. Trabajos de brújula

Page 109: Aplicaciones Topograficas

5/8/2018 Aplicaciones Topograficas - slidepdf.com

http://slidepdf.com/reader/full/aplicaciones-topograficas 109/116

 

PRESUPUESTO DE TRABAJOS TOPOGRAFICOS

T14 - 4

14.2.4. Trabajos de nivelación por alturas

14.2.5. Pérdidas

Días no trabajados: fiestas(20%) y mal tiempo(lluvia, nieve, _)(ver estadística del lugar)

14.3. Ejemplo.

Sea un levantamiento a escala 1/2.000 de 5.000 Ha de terreno llano. Se precisa el parcelario

de la misma, siendo 0,2 el índice correspondiente (número de parcelas por Ha.). Los vértices

de la triangulación se señalizarán de modo permanente mediante tubos rellenos de hormigón.

La señal de nivelación más próxima desde la que se puede dar la altitud al punto altimétrico

fundamental se encuentra a 30 Km; recorrido que puede considerarse llano, y dentro de la

zona se prevé realizar 40 Km de líneas de nivelación geométrica para su apoyo altimétrico.

En tales condiciones, los trabajos necesarios para las diversas fases serán:

14.3.1. Triangulación

El número de vértices será (1):

vértices100100

50002 =  

El tiempo en proyecto y observación (2):

 jornadas185,5

100=  

14.3.2. Itinerarios con taquímetro

Page 110: Aplicaciones Topograficas

5/8/2018 Aplicaciones Topograficas - slidepdf.com

http://slidepdf.com/reader/full/aplicaciones-topograficas 110/116

 

PRESUPUESTO DE TRABAJOS TOPOGRAFICOS

T14 - 5

El número de estaciones (3):

0,45 x 5000 = 2250 estaciones

El tiempo invertido (4):

 jornadas5640

2250=  

14.3.3. Itinerarios con brújula

El número de estaciones (5):

6 x 5000 = 3000 puntos

El número de parcelas existentes en la zona (6):

0,2 x 5000 =1000 parcelas

para las que se necesitarán (7):

3,5 x 1000 = 3500 puntos

Dada la escala será de aplicación la nota al pie del cuadro según la cual corresponde unareducción de la mitad de (5) y que como máximo será la mitad de (7), ósea (8):

3000 + 3500 - 1750 = 31750 puntos

El tiempo invertido (9):

 jornadas159200

31750=  

14.3.4. Nivelaciones geométricas.

Distando 30 Km el punto altimétrico, el desarrollo es (10):

2 x 30000 = 60000 m

Admitiendo una separación entre miras de 85 m (valor medio de terreno llano) (11):

estaciones70685

60000=  

El tiempo invertido (12):

 jornadas6125

706=  

Page 111: Aplicaciones Topograficas

5/8/2018 Aplicaciones Topograficas - slidepdf.com

http://slidepdf.com/reader/full/aplicaciones-topograficas 111/116

 

PRESUPUESTO DE TRABAJOS TOPOGRAFICOS

T14 - 6

Los 40 Km de nivelaciones dentro de la zona pueden ser sencillos (13):

estaciones47185

40000=  

 jornadas4125471

=  

14.3.5. Resumen de los trabajos

Fase Jornadas reales Pérdidas Jornadas totales Peones Peonadas Residencias Transportes

Triangulación 18 6 24 1 24 24 18

Taquimetro 56 20 76 2 152 76 56

Brujula 159 56 215 3 645 215 159

Nivel 6 2 8 2 16 8 6

4 1 5 2 10 5 4Totales 243 85 328 - 847 328 243

Page 112: Aplicaciones Topograficas

5/8/2018 Aplicaciones Topograficas - slidepdf.com

http://slidepdf.com/reader/full/aplicaciones-topograficas 112/116

 

PRESUPUESTO DE TRABAJOS TOPOGRAFICOS

T14 - 7

14.4. PRESUPUESTO PARA LOS TRABAJOS DE CAMPO.

Precios unitarios: operador, peón, _ .

Transporte:

Residencia:

Señales permanentes, banderolas, estacas, _

Permisos (Normalmente por cuenta de la Propiedad)

Gastos Generales

Beneficio

Total

14.5. ORGANIZACIÓN DE LOS TRABAJOS DE GABINETE.

La organización depende de: la dependencia entre las redes de levantamiento y el número de

operadores.

14.6. TRABAJOS DE GABINETE.

14.6.1. Cálculos:

Jornadas reales 40% de 243 97

Pérdidas 20% de 97 19

Jornadas totales 116

Page 113: Aplicaciones Topograficas

5/8/2018 Aplicaciones Topograficas - slidepdf.com

http://slidepdf.com/reader/full/aplicaciones-topograficas 113/116

 

PRESUPUESTO DE TRABAJOS TOPOGRAFICOS

T14 - 8

14.6.2. Dibujo:

Horas 5000/4 = 1250

Jornadas reales 1250/8 = 156

Pérdidas 20% de 156 = 31

Jornadas totales 187

14.6.3. Soporte.

En la escala 1/2000, 1 Ha está representada por 25 cm2, luego:

5000 Ha<>125000 cm2 12,50 m2

Desperdicio 90% de 12,50 m2 11,25 m2

Total soporte 23,75 m2

14.6.4. Soporte magnético del dibujo.

Actualmente, es una norma habitual facilitar la información cartográfica en soporte magnético

en ficheros con extensión estándar.

14.6.5. Tinta y desgaste del material de dibujo.

10% del precio de los 23,75 m2 de soporte.

14.7. PRESUPUESTO PARA LOS TRABAJOS DE GABINETE.

14.8. PRESUPUESTO TOTAL

Page 114: Aplicaciones Topograficas

5/8/2018 Aplicaciones Topograficas - slidepdf.com

http://slidepdf.com/reader/full/aplicaciones-topograficas 114/116

 

PETICION DE OFERTA DE TRABAJOS TOPOGRAFICOS

T15 - 1

15. PETICIÓN DE OFERTA

15.1. PETICIÓN DE OFERTA PARA UN TRABAJO TOPOGRÁFICO

15.2. EJEMPLO

APÉNDICES

1.- CASO REAL DE PETICIÓN DE OFERTA

2.- CASO REAL DE OFERTA

Page 115: Aplicaciones Topograficas

5/8/2018 Aplicaciones Topograficas - slidepdf.com

http://slidepdf.com/reader/full/aplicaciones-topograficas 115/116

 

PETICION DE OFERTA DE TRABAJOS TOPOGRAFICOS

T15 - 2

15. PETICIÓN DE OFERTA

Permítame el alumno que este capítulo le inicie dando las gracias a D. Alberto Bazaga Doral,

y a la empresa SAT, Servicios Técnicos S.A., a quienes debo mi primera petición de oferta y

que en aquella ocasión fue para las obras civiles de una pequeña central hidroeléctrica.

15.1. PETICIÓN DE OFERTA PARA UN TRABAJO TOPOGRÁFICO

La petición de oferta es un documento que se genera para solicitar la realización de un trabajo

topográfico, en este caso, especificando, en sus distintos apartados, el objeto, su alcance, las

condiciones técnicas del material y de ejecución, las condiciones económicas de contratación,

los elementos de control, los plazos de ejecución.

15.2. EJEMPLO

El índice de una petición de oferta sería el siguiente:

1. OBJETO

2. ALCANCE

3. CONDICIONES TÉCNICAS

3.1. CONDICIONES DEL MATERIAL

3.1.1. MATERIAL DE CAMPO

3.1.2. MATERIAL DE GABINETE

3.2. CONDICIONES DE EJECUCIÓN

3.2.1. EJECUCIÓN EN CAMPO

3.2.2. EJECUCIÓN EN GABINETE

4. CONDICIONES ECONÓMICAS

El contenido de cada apartado, lógicamente, queda abierto a las condiciones peculiares del

trabajo pero en líneas generales contendría los siguientes puntos.

1. OBJETO

Este punto apunta los datos necesarios para dar una idea del entorno del trabajo:

Una reseña del problema que se quiere solucionar

Antecedentes administrativos

Page 116: Aplicaciones Topograficas

5/8/2018 Aplicaciones Topograficas - slidepdf.com

http://slidepdf.com/reader/full/aplicaciones-topograficas 116/116

 

PETICION DE OFERTA DE TRABAJOS TOPOGRAFICOS

Trabajos paralelos que se realizarán con el resultado del levantamiento

Trabajos análogos realizados en la zona.

2. ALCANCE

Enumeración pormenorizada de los todos los trabajos a realizar, junto con sus características

de peculiares.

3. CONDICIONES TÉCNICAS

Este punto define las condiciones

3.1. CONDICIONES DEL MATERIAL

3.1.1. MATERIAL DE CAMPO

3.1.2. MATERIAL DE GABINETE

3.2. CONDICIONES DE EJECUCIÓN

3.2.1. EJECUCIÓN EN CAMPO

3.2.2. EJECUCIÓN EN GABINETE

4. CONDICIONES ECONÓMICAS