Algebra de boole johnny anderson chavarria alonzo

16
Algebra de Boole «Año de la Inversión para el Desarrollo Rural y Alimentaria» Nombres: Johnny Anderson Apellidos: Chavarria Alonzo Profesor: Ricardo Lara Dávila IV Ciclo 2013

Transcript of Algebra de boole johnny anderson chavarria alonzo

Page 1: Algebra de boole   johnny anderson chavarria alonzo

Algebra de Boole

«Año de la Inversión para el Desarrollo Rural y Alimentaria»

Nombres: Johnny AndersonApellidos: Chavarria Alonzo

Profesor: Ricardo Lara DávilaIV Ciclo

2013

Page 2: Algebra de boole   johnny anderson chavarria alonzo

Algebra de BooleO Las álgebras booleanas, estudiadas por primera vez en

detalle por George Boole , constituyen un área de las matemáticas que ha pasado a ocupar un lugar prominente con el advenimiento de la computadora digital. Son usadas ampliamente en el diseño de circuitos de distribución y computadoras, y sus aplicaciones van en aumento en muchas otras áreas. En el nivel de lógica digital de una computadora, lo que comúnmente se llama hardware, y que está formado por los componentes electrónicos de la máquina, se trabaja con diferencias de tensión, las cuales generan funciones que son calculadas por los circuitos que forman el nivel. Éstas funciones, en la etapa de diseña del hardware, son interpretadas como funciones de boole.En el presente trabajo se intenta dar una definición de lo que es un álgebra de boole; se tratan las funciones booleanas,haciendo una correlación con las fórmulas proposicionales.

Page 3: Algebra de boole   johnny anderson chavarria alonzo

O Asimismo, se plantean dos formas canónicas de las funciones booleanas, que son útiles para varios propósitos, tales como el de determinar si dos expresiones representan o no la misma función. Pero para otros propósitos son a menudo engorrosas, por tener más operaciones que las necesarias. Particularmente, cuando estamos construyendo los circuitos electrónicos con que implementar funciones booleanas, el problema de determinar una expresión mínima para una función es a menudo crucial. No resultan de la misma eficiencia en dinero y tiempo, principalmente, dos funciones las cuales calculan lo mismo pero donde una tiene menos variables y lo hace en menor tiempo. Como solución a este problema, se plantea un método de simplificación, que hace uso de unos diagramas especiales llamados mapas o diagramas de Karnaugh, y el cual tiene la limitación de poder trabajar adecuadamente sólo con pocas variables.

Page 4: Algebra de boole   johnny anderson chavarria alonzo

Reseña HistóricaO A mediados del siglo XIX, George Boole (1815-1864), en sus libros: "The

Mathematical Analysis of Logic" (1847) y "An Investigation of te Laws of Thought" (1854), desarrolló la idea de que las proposiciones lógicas podían ser tratadas mediante herramientas matemáticas. Las proposiciones lógicas (asertos, frases o predicados de la lógica clásica) son aquellas que únicamente pueden tomar valores Verdadero/Falso, o preguntas cuyas únicas respuestas posibles sean Sí/No. Según Boole, estas proposiciones pueden ser representadas mediante símbolos y la teoría que permite trabajar con estos símbolos, sus entradas (variables) y sus salidas (respuestas) es la Lógica Simbólica desarrollada por él. Dicha lógica simbólica cuenta con operaciones lógicas que siguen el comportamiento de reglas algebraicas. Por ello, al conjunto de reglas de la Lógica Simbólica se le denomina ÁLGEBRA DE BOOLE.

O A mediados del siglo XX el álgebra Booleana resultó de una gran importancia práctica, importancia que se ha ido incrementando hasta nuestros días, en el manejo de información digital (por eso hablamos de Lógica Digital). Gracias a ella, Shannon (1930) pudo formular su teoría de la codificación y John Von Neumann pudo enunciar el modelo de arquitectura que define la estructura interna de los ordenadores desde la primera generación.

Page 5: Algebra de boole   johnny anderson chavarria alonzo

O Todas las variables y constantes del Álgebra booleana, admiten sólo uno de dos valores en sus entradas y salidas: Sí/No, 0/1 o Verdadero/Falso. Estos valores bivalentes y opuestos pueden ser representados por números binarios de un dígito (bits), por lo cual el Álgebra booleana se puede entender cómo el Álgebra del Sistema Binario. Al igual que en álgebra tradicional, también se trabaja con letras del alfabeto para denominar variables y formar ecuaciones para obtener el resultado de ciertas operaciones mediante una ecuación o expresión booleana. Evidentemente los resultados de las correspondientes operaciones también serán binarios.

O Todas las operaciones (representadas por símbolos determinados) pueden ser materializadas mediante elementos físicos de diferentes tipos (mecánicos, eléctricos, neumáticos o electrónicos) que admiten entradas binarias o lógicas y que devuelven una respuesta (salida) también binaria o lógica. Ejemplos de dichos estados son: Abierto/Cerrado (interruptor), Encendida/Apagada (bombilla), Cargado/Descargado (condensador) , Nivel Lógico 0/Nivel lógico 1 (salida lógica de un circuito semiconductor), etcétera.

Page 6: Algebra de boole   johnny anderson chavarria alonzo

O Los dispositivos con los cuales se implementan las funciones lógicas son llamados puertas (o compuertas) y, habitualmente, son dispositivos electrónicos basados en transistores. Estos dispositivos, y otros que veremos a lo largo de esta unidad, son los que permiten el diseño, y la ulterior implementación, de los circuitos de cualquier ordenador moderno, así como de muchos de los elementos físicos que permiten la existencia de las telecomunicaciones modernas, el control de máquinas, etcétera. De hecho, pensando en los ordenadores como una jerarquía de niveles, la base o nivel inferior sería ocupada por la lógica digital (en el nivel más alto del ordenador encontraríamos los actuales lenguajes de programación de alto nivel).

O En esta unidad se representan las puertas lógicas elementales, algunas puertas complejas y algunos ejemplos de circuitos digitales simples, así como algunas cuestiones de notación. Por otra parte se plantean actividades de trabajo, muchas de las cuales implican una respuesta escrita en vuestro cuaderno de trabajo. El deseo del autor es que os resulte sencillo y ameno adentraros en el mundo de la lógica digital y despertaros la curiosidad, tanto por ella, como por la matemática que subyace en ella.

Page 7: Algebra de boole   johnny anderson chavarria alonzo

Algebra BooleanaO El álgebra booleana es un sistema matemático deductivo centrado en

los valores cero y uno (falso y verdadero). Un operador binario " º " definido en éste juego de valores acepta un par de entradas y produce un solo valor booleano, por ejemplo, el operador booleano AND acepta dos entradas booleanas y produce una sola salida booleana.Para cualquier sistema algebraico existen una serie de postulados iniciales, de aquí se pueden deducir reglas adicionales, teoremas y otras propiedades del sistema, el álgebra booleana a menudo emplea los siguientes postulados:

O Cerrado. El sistema booleano se considera cerrado con respecto a un operador binario si para cada par de valores booleanos se produce un solo resultado booleano.

O Conmutativo. Se dice que un operador binario " º " es conmutativo si A º B = B º A para todos los posibles valores de A y B.

O Asociativo. Se dice que un operador binario " º " es asociativo si (A º B) º C = A º (B º C) para todos los valores booleanos A, B, y C.

O Distributivo. Dos operadores binarios " º " y " % " son distributivos si A º (B % C) = (A º B) % (A º C) para todos los valores booleanos A, B, y C.

O Identidad. Un valor booleano I se dice que es un elemento de identidad con respecto a un operador binario " º " si A º I = A.

Page 8: Algebra de boole   johnny anderson chavarria alonzo

O Inverso. Un valor booleano I es un elemento inverso con respecto a un operador booleano " º " si A º I = B, y B es diferente de A, es decir, B es el valor opuesto de A.

O Para nuestros propósitos basaremos el álgebra booleana en el siguiente juego de operadores y valores:- Los dos posibles valores en el sistema booleano son cero y uno, a menudo llamaremos a éstos valores respectivamente como falso y verdadero.- El símbolo ·  representa la operación lógica AND. Cuando se utilicen nombres de variables de una sola letra se eliminará el símbolo ·,  por lo tanto AB representa la operación lógica AND entre las variables A y B, a esto también le llamamos el producto entre A y B.- El símbolo "+" representa la operación lógica OR, decimos que A+B es la operación lógica OR entre A y B, también llamada la suma de A y B.

Page 9: Algebra de boole   johnny anderson chavarria alonzo

O - El complemento lógico, negación ó NOT es un operador unitario, en éste texto utilizaremos el símbolo " ' " para denotar la negación lógica, por ejemplo, A' denota la operación lógica NOT de A.- Si varios operadores diferentes aparecen en una sola expresión booleana, el resultado de la expresión depende de la procedencia de los operadores, la cual es de mayor a menor, paréntesis, operador lógico NOT, operador lógico AND y operador lógico OR. Tanto el operador lógico AND como el OR son asociativos por la izquierda. Si dos operadores con la misma procedencia están adyacentes, entonces se evalúan de izquierda a derecha. El operador lógico NOT es asociativo por la derecha.Utilizaremos además los siguientes postulados:

O P1 El álgebra booleana es cerrada bajo las operaciones AND, OR y NOT

O P2 El elemento de identidad con respecto a ·  es uno y con respecto a +  es cero. No existe elemento de identidad para el operador NOT

O P3 Los operadores ·   y + son conmutativos.O P4 ·   y + son distributivos uno con respecto al otro, esto

es, A· (B+C) = (A·B)+(A·C) y A+ (B·C) = (A+B) ·(A+C).O P5 Para cada valor A existe un valor A' tal que A·A' = 0 y

A+A' = 1. Éste valor es el complemento lógico de A.O P6 ·   y + son ambos asociativos, ésto es, (AB) C = A (BC) y

(A+B)+C = A+ (B+C).

Page 10: Algebra de boole   johnny anderson chavarria alonzo

O Es posible probar todos los teoremas del álgebra booleana utilizando éstos postulados, además es buena idea familiarizarse con algunos de los teoremas más importantes de los cuales podemos mencionar los siguientes:

O Teorema 1: A + A = AO Teorema 2: A · A = AO Teorema 3: A + 0 = AO Teorema 4: A · 1 = AO Teorema 5: A · 0 = 0O Teorema 6: A + 1 = 1O Teorema 7: (A + B)' = A' · B'O Teorema 8: (A · B)' = A' + B'O Teorema 9: A + A · B = AO Teorema 10: A · (A + B) = AO Teorema 11: A + A'B = A + BO Teorema 12: A' · (A + B') = A'B'O Teorema 13: AB + AB' = AO Teorema 14: (A' + B') · (A' + B) = A'O Teorema 15: A + A' = 1O Teorema 16: A · A' = 0

Page 11: Algebra de boole   johnny anderson chavarria alonzo

Algebra Booleana y Circuitos Electrónicos

O La relación que existe entre la lógica booleana y los sistemas de cómputo es fuerte, de hecho se da una relación uno a uno entre las funciones booleanas y los circuitos electrónicos de compuertas digitales. Para cada función booleana es posible diseñar un circuito electrónico y viceversa, como las funciones booleanas solo requieren de los operadores AND, OR y NOT podemos construir nuestros circuitos utilizando exclusivamente éstos operadores utilizando las compuertas lógicas homónimasUn hecho interesante es que es posible implementar cualquier circuito electrónico utilizando una sola compuerta, ésta es la compuerta NAND

Page 12: Algebra de boole   johnny anderson chavarria alonzo

O Para probar que podemos construir cualquier función booleana utilizando sólo compuertas NAND, necesitamos demostrar cómo construir un inversor (NOT), una compuerta AND y una compuerta OR a partir de una compuerta NAND, ya que como se dijo, es posible implementar cualquier función booleana utilizando sólo los operadores booleanos AND, OR y NOT. Para construir un inversor simplemente conectamos juntas las dos entradas de una compuerta NAND. Una vez que tenemos un inversor, construir una compuerta AND es fácil, sólo invertimos la salida de una compuerta NAND, después de todo, NOT ( NOT (A AND B)) es equivalente a A AND B. Por supuesto, se requieren dos compuertas NAND para construir una sola compuerta AND, nadie ha dicho que los circuitos implementados sólo utilizando compuertas NAND sean lo óptimo, solo se ha dicho que es posible hacerlo. La otra compuerta que necesitamos sintetizar es la compuerta lógica OR, ésto es sencillo si utilizamos los teoremas de DeMorgan, que en síntesis se logra en tres pasos, primero se reemplazan todos los "·" por "+" después se invierte cada literal y por último se niega la totalidad de la expresión:

O A OR BA AND B.......................Primer paso para aplicar el teorema de DeMorganA' AND B'.....................Segundo paso para aplicar el teorema de DeMorgan(A' AND B')'..................Tercer paso para aplicar el teorema de DeMorgan(A' AND B')' = A' NAND B'.....Definición de OR utilizando NAND

Page 13: Algebra de boole   johnny anderson chavarria alonzo

Circuitos Combinacionales

O Un circuito combinacional es un sistema que contiene operaciones booleanas básicas (AND, OR, NOT), algunas entradas y un juego de salidas, como cada salida corresponde a una función lógica individual, un circuito combinacional a menudo implementa varias funciones booleanas diferentes, es muy importante recordar éste echo, cada salida representa una función booleana diferente.

O Un ejemplo común de un circuito combinacional es el decodificador de siete segmentos, se trata de un circuito que acepta cuatro entradas y determina cuál de los siete segmentos se deben iluminar para representar la respectiva entrada, de acuerdo con lo dicho en el párrafo anterior, se deben implementar siete funciones de salida diferentes, una para cada segmento. Las cuatro entradas para cada una de éstas funciones booleanas son los cuatro bits de un número binario en el rango de 0 a 9. Sea D el bit de alto orden de éste número y A el bit de bajo orden, cada función lógica debe producir un uno (para el segmento encendido) para una entrada dada si tal segmento en particular debe ser iluminado, por ejemplo, el segmento e debe iluminarse para los valores 0000, 0010, 0110 y 1000.

Page 14: Algebra de boole   johnny anderson chavarria alonzo

O En la siguiente tabla se puede ver qué segmentos deben iluminarse de acuerdo al valor de entrada, tenga en cuenta que sólo se están representando valores en el rango de 0 a 9, los decodificadores para las pantallas de siete segmentos comerciales tienen capacidad para desplegar valores adicionales que corresponden a las letras A a la F para representaciones hexadecimales, sin embargo la mecánica para iluminar los respectivos segmentos es similar a la aquí representada para los valores numéricos.

Page 15: Algebra de boole   johnny anderson chavarria alonzo

Relación entre la lógica combinacional y secuencial con

la programaciónO En ésta lección hemos dado una repasada muy básica a los

elementos que forman la base de los modernos sistemas de cómputo, en la sección dedicada al diseño electrónico estudiaremos a profundidad los conceptos aquí presentados, pero para aquellos que están más interesados en el aspecto programático podemos decir que con los elementos vistos en ésta lección es posible implementar máquinas de estado, sin embargo la moraleja de ésta lección es muy importante: cualquier algoritmo que podamos implementar en software, lo podemos a su vez implementar directamente en hardware. Ésto sugiere que la lógica booleana es la base computacional en los modernos sistemas de cómputo actuales. Cualquier programa que Usted escriba, independientemente del lenguaje que utilice, sea éste de alto ó bajo nivel, se puede especificar como una secuencia de ecuaciones booleanas.

Page 16: Algebra de boole   johnny anderson chavarria alonzo

O Un hecho igualmente interesante es el punto de vista opuesto, es posible implementar cualquier función de hardware directamente en software, en la actualidad ésta es la función principal del lenguaje ensamblador y otros con capacidad de trabajar directamente en hardware, como el C y el C++. Las consecuencias de éste fenómeno apenas se están explotando, se infiere la existencia de un futuro muy prometedor para el profesional de la programación, especialmente aquellos dedicados a los sistemas incrustados (embedded systems), los microcontroladores y los profesionales dedicados a la Programación Orientada a Objetos. Para tener éxito en éstos campos de la investigación es fundamental comprender las funciones booleanas y la manera de implementarlas en software. Aún y cuando Usted no desee trabajar en hardware, es importante conocer las funciones booleanas ya que muchos lenguajes de alto nivel procesan expresiones booleanas, como es el caso de los enunciados if-then ó los bucles while.