60279646 Factor Compresibilidad Standing Katz Programacion

23
UMSA – FACULTAD DE INGENIERÍA DOCENTE: ING. HERMAS HERRERA INGENIERIA PETROLERA UNIV.: JORGE GAMBARTE ARANCIBIA FACTOR DE COMPRESIBILIDAD (Z) POR STANDING-KATS 1. INTRODUCCIÓN.- El Factor de compresibilidad (Z) se define como la razón entre el volumen molar de un gas real (V real ) y el correspondiente volumen de un gas ideal (V ideal ), Y se utiliza para comparar el comportamiento de un gas real respecto al establecido por la ecuación de los Gases Ideales. Partiendo de esta definición y recordando que: Sustituyendo en la definición de Z: Por lo tanto: Es decir Z representa un factor de corrección para la ecuación de los gases ideales. Con base en esto se encuentra tres tipos de comportamiento distintos: Z = 1, comportamiento de Gas Ideal. (altas temperaturas y bajas presiones). Z > 1, gases como el Hidrógeno y Neón, difícilmente compresibles (altas temperaturas y presiones). Z < 1, gases como el O 2 , Argón y CH 4 , fácilmente compresibles (bajas temperaturas y altas presiones). PROGRAMACION APLICADA FACTOR DE COMPRESIBILIDAD 1

Transcript of 60279646 Factor Compresibilidad Standing Katz Programacion

Page 1: 60279646 Factor Compresibilidad Standing Katz Programacion

UMSA – FACULTAD DE INGENIERÍA DOCENTE: ING. HERMAS HERRERA

INGENIERIA PETROLERA UNIV.: JORGE GAMBARTE ARANCIBIA

FACTOR DE COMPRESIBILIDAD (Z)POR

STANDING-KATS

1. INTRODUCCIÓN.-

El Factor de compresibilidad (Z) se define como la razón entre el volumen molar de un gas real (Vreal) y el correspondiente volumen de un gas ideal (Videal),

Y se utiliza para comparar el comportamiento de un gas real respecto al establecido por la ecuación de los Gases Ideales. Partiendo de esta definición y recordando que:

Sustituyendo en la definición de Z:

Por lo tanto:

Es decir Z representa un factor de corrección para la ecuación de los gases ideales. Con base en esto se encuentra tres tipos de comportamiento distintos:

• Z = 1, comportamiento de Gas Ideal. (altas temperaturas y bajas presiones).

• Z > 1, gases como el Hidrógeno y Neón, difícilmente compresibles (altas temperaturas y presiones).

• Z < 1, gases como el O2, Argón y CH4, fácilmente compresibles (bajas temperaturas y altas presiones).

PROGRAMACION APLICADA FACTOR DE COMPRESIBILIDAD

1

Page 2: 60279646 Factor Compresibilidad Standing Katz Programacion

UMSA – FACULTAD DE INGENIERÍA DOCENTE: ING. HERMAS HERRERA

INGENIERIA PETROLERA UNIV.: JORGE GAMBARTE ARANCIBIA

En forma breve las diferencias entre gas ideal y un gas real:

• Para un gas ideal la variable "z" siempre vale uno, en cambio para un gas real, "z" tiene que valer diferente que uno.

• La ecuación de estado para un gas ideal, prescinde de la variable "z" ya que esta para un gas ideal, vale uno. Y para un gas real, ya que esta variable tiene que ser diferente de uno, así que la formula queda de esta forma: pV=znRT.

• Los gases reales, a presiones y temperaturas cercanas a las ambientales, actúan como gases ideales.

2. JUSTIFICACIÓN.-

El factor de compresibilidad Z es un factor que compensa la falta de idealidad del gas, así que la ley de los gases ideales se convierte en una ecuación de estado generalizada la cual es una combinación de las leyes de Charles y Boyle y se expresa como:.

Donde:

P = presión, psi

V = volumen, pies cúbicos

Z = desviación del factor de compresibilidad del gas ideal

N = libras de gas dividido por su peso molecular, se cumple para cualquier gas dado

R = 10,73 para todos los gases (R usada aquí no debe ser confundida con el factor de recubrimiento R usado en la formulas de estimación de reservas)

T = temperatura del gas, ºR (460 + ºF)

Una forma de pensar en Z es como un factor que convierte la ecuación en una igualdad. Si sé grafica el factor de compresibilidad para una temperatura dada contra la presión para diferentes gases, se obtienen curvas. En cambio, si la compresibilidad se grafica contra la presión

PROGRAMACION APLICADA FACTOR DE COMPRESIBILIDAD

2

Page 3: 60279646 Factor Compresibilidad Standing Katz Programacion

UMSA – FACULTAD DE INGENIERÍA DOCENTE: ING. HERMAS HERRERA

INGENIERIA PETROLERA UNIV.: JORGE GAMBARTE ARANCIBIA

reducida en función de la temperatura reducida, entonces para la mayor parte de los gases los valores de compresibilidad a las mismas temperatura y presión reducidas quedan aproximadamente en el mismo punto.

3. OBJETIVOS.-

3.1. OBJETIVO GENERAL.-

Generar un software lo suficientemente capaz de determinar el factor “z” de los gases reales en base a su composición por el método de STANDING-KATS.

3.2. OBJETIVOS ESPECÍFICOS.-

Comprobar que a partir de la Presión Pseudoreducida y la Temperatura Pseudoreducida podemos encontrar nuestro factor Z mediante la gráfica Standing – Katz.

Comprobar que usando Microsoft Visual Basic 6.0 es suficientemente capaz de generar programas útiles para el campo petrolífero.

4. MARCO TEÓRICO.-

PROPIEDADES CRÍTICAS

Es el conjunto de condiciones físicas de presión, temperatura y volumen, a las cuales la densidad y otras propiedades del líquido y gas se vuelven idénticas, es decir, es un punto a una presión y temperatura dada donde físicamente no puede diferenciarse si se trata de gas o líquido. Estas propiedades críticas son únicas (una sola presión, una sola temperatura) para una sustancia dada y se requiere para la determinación de otras propiedades de la sustancia.

La presión crítica, Pcr, y la temperatura crítica, Tcr, son medidas en el laboratorio y usualmente son desconocidas por lo que se requiere su determinación por medio de Correlaciones, para determinar las propiedades críticas en función de la gravedad específica del gas.

Para gas en superficie:

Pcr = 677 + 15 γg - 37.5 γg ²

PROGRAMACION APLICADA FACTOR DE COMPRESIBILIDAD

3

Page 4: 60279646 Factor Compresibilidad Standing Katz Programacion

UMSA – FACULTAD DE INGENIERÍA DOCENTE: ING. HERMAS HERRERA

INGENIERIA PETROLERA UNIV.: JORGE GAMBARTE ARANCIBIA

Tcr = 168 + 325 γg - 12.5 γg ²

Para condensados:

Pcr = 706 - 51.7 γg - 11.1 γg ²Tcr = 187 + 330 γg - 71.5 γg ²

y la gravedad especifica se obtiene mediante:

221 gg

g

γγγ

+=

FACTOR DE COMPRESIBILIDAD Z

La presión de un gas sobre las paredes del recipiente que lo contiene, el volumen que ocupa, la temperatura a la que se encuentra y la cantidad de sustancias que lo contienen (numero de moles) están relacionadas. A partir de las leyes de Boyle, Charles y Avogadro se puede determinar la ecuación de estado de los gases Ideales.

TRnVP *** =

La desviación de un gas respecto de su comportamiento ideal se hace mayor cerca del punto crítico.

Puede ser obtenido experimentalmente dividiendo el volumen real de n moles de un gas a P y T por el volumen ideal ocupado por la misma masa de gas a iguales condiciones de P y T.

Introduciendo el factor de corrección Z:

TRZVP *** =

Determinación del Factor de Comprensibilidad (Z) para un componente:

Z = f(Pr,Tr)

Psc = ∑Yi * Pci

Tsc = ∑Yi * Tci

PROGRAMACION APLICADA FACTOR DE COMPRESIBILIDAD

4

Page 5: 60279646 Factor Compresibilidad Standing Katz Programacion

UMSA – FACULTAD DE INGENIERÍA DOCENTE: ING. HERMAS HERRERA

INGENIERIA PETROLERA UNIV.: JORGE GAMBARTE ARANCIBIA

Donde:

Yi: Fracción molar del componente i.

Cuando tiene más de un componente se calcula Z por las propiedades Pseudoreducidas.

SC

SISTSR P

P

icaPseudocrítesión

sistemadelesiónP ==

Pr

Pr

SC

SISTSR T

T

icaPseudocrítaTemperatur

sistemadelaTemperaturT ==

Standing y Katz desarrollaron un gráfico y este es el gráfico más utilizado para la determinación del factor de compresibilidad, lo que hicieron fue desarrollar una gráfica en que a partir de la presión Pseudoreducida y la temperatura Pseudoreducida se pudiera determinar el factor de compresibilidad de la mezcla, es decir ellos hicieron de forma experimental el comportamiento del factor de compresibilidad de un gas con diferentes valores de presión y temperatura Pseudoreducida y graficaron sus resultados, entonces para no determinar el comportamiento de todos los resultados, se va directamente con el valor de presión Pseudoreducida y con el valor de temperatura Pseudoreducida y se determina de una forma más sencilla el factor de compresibilidad.

PROGRAMACION APLICADA FACTOR DE COMPRESIBILIDAD

5

Page 6: 60279646 Factor Compresibilidad Standing Katz Programacion

UMSA – FACULTAD DE INGENIERÍA DOCENTE: ING. HERMAS HERRERA

INGENIERIA PETROLERA UNIV.: JORGE GAMBARTE ARANCIBIA

Adicionalmente, vinieron autores luego y dijeron bueno vamos hacer algo más fácil, para no tener que utilizar esta gráfica para determinar el factor de compresibilidad, vamos a determinar una ecuación que me permita a mi calcular el factor de compresibilidad, es decir, sí yo conozco la presión y temperatura Pseudoreducida, yo puedo determinar el factor de compresibilidad entrando a esta curva, entonces vamos hacer un algoritmo que me simule el comportamiento de toda esas curvas con la menor desviación estándar posible, de forma tal que, con esos dos parámetros (presión y temperatura Pseudoreducida) y cualquier otro parámetro que se pueda asociar del crudo, se pueda determinar Z; el factor de correlación, entonces hay mucha correlaciones que se pueden encontrar para la determinación del Z.

PROGRAMACION APLICADA FACTOR DE COMPRESIBILIDAD

6

Page 7: 60279646 Factor Compresibilidad Standing Katz Programacion

UMSA – FACULTAD DE INGENIERÍA DOCENTE: ING. HERMAS HERRERA

INGENIERIA PETROLERA UNIV.: JORGE GAMBARTE ARANCIBIA

La más utilizada es la ecuación de Standing para el cálculo del factor de comprensibilidad del gas y es la más difundida, pero hay muchas otras ecuaciones y las mayoría de estas ecuaciones tienen que aplicar algún método interactivo para encontrar la solución (ensayo y error); es decir yo tengo que asignarle un valor de Z, calcular presión y temperatura Pseudoreducida, evaluar diferentes constantes que aparezcan en la ecuación dependiendo en la que se trabaje, verificar sí lo valores que estoy obteniendo son correctos y si no es así, ir iterando, modificando, calculando un nuevo valor, incrementando en diferentes valores que estoy asumiendo para que exista convergencia y así determinar el valor de Z, entonces el valor de Z se determina básicamente por ensayo y error, se asume un valor, si no es este, se cambia hasta que ambos lados de la ecuación coincidan y ese es el valor de Z, la mayoría de los métodos para determinar Z a partir de este sistema, tiene que ser resuelto por métodos iterativos.

OTROS MÉTODOS PARA LA DETERMINACIÓN DEL FACTOR DE COMPRESIBILIDAD

En la realidad no existen gases ideales o perfectos; sin embargo, muchos gases cerca de la temperatura y presión atmosféricas se aproximan a la idealidad. El gas ideal puede definirse como el gas cuyo volumen se reduce a la mitad al duplicarse la presión y cuya presión se dobla si se duplica la temperatura manteniendo el volumen constante. Esto no es más que los enunciados de la leyes de Boyle y Charles Mariotte. En muchos gases en particular los gases naturales de interés para los Ingenieros de Petróleos, se ha observado que si el volumen del gas se comprime a la mitad, la presión resulta ser menor del doble de la presión inicial; es decir, el gas es más compresible que el gas ideal.

Debido a que el volumen de un gas se reduce a menos de su mitad, si se dobla la presión se dice que el gas es supercompresible. Al valor numérico que representa una medida de la desviación del comportamiento ideal del gas se denomina factor de súper compresibilidad, o más frecuentemente factor de compresibilidad. También se le conoce como factor de desviación del gas y se denota por la letra Z, éste valor adimensional generalmente varía entre 0,7 y 1,2. El valor de 1 representa el comportamiento ideal.

Matemáticamente, Z es obtenido mediante complejas Correlaciones empíricas, que arrojan resultados con suficiente exactitud. Entre las Correlaciones más usadas se destaca la de Standing que es una modificación al método de Beggs y Brill:

PROGRAMACION APLICADA FACTOR DE COMPRESIBILIDAD

7

Page 8: 60279646 Factor Compresibilidad Standing Katz Programacion

UMSA – FACULTAD DE INGENIERÍA DOCENTE: ING. HERMAS HERRERA

INGENIERIA PETROLERA UNIV.: JORGE GAMBARTE ARANCIBIA

Correlación de DRANCHUK - ABU – KASSEM .- Este algoritmo converge rápidamente. Requiere máximo cinco iteraciones para proporcionar resultados exactos. La densidad reducida se evalúa iterativamente por el método de Newton-Raphson:

Donde Tsr y Psr son la presión y temperatura pseudoreducidas.

A = 0.06424B = 0.5353 Tsr - 0.6123C = 0.3151 Tsr - 1.467 - 0.578/Tsr²D = TsrE = 0.6816/Tsr²F = 0.6845G = 0.27 Psr

PROGRAMACION APLICADA FACTOR DE COMPRESIBILIDAD

8

Page 9: 60279646 Factor Compresibilidad Standing Katz Programacion

UMSA – FACULTAD DE INGENIERÍA DOCENTE: ING. HERMAS HERRERA

INGENIERIA PETROLERA UNIV.: JORGE GAMBARTE ARANCIBIA

ρr(0) = 0.27 Psr/Tsr

Correlación de BEGGS Y BRILL .- Este método radica en un ajuste efectuado sobre una de las curvas de la gráfica de Standing y Katz.

Debe tenerse en cuenta, que si los exponentes de e son menores de 100, todo este valor se anula.

Correlación de YARBOROUGH Y HALL .- Este método, exceptuando las isotermas de baja presión, reproduce el gráfico de Standing y Katz con una exactitud promedia del 0.3%. Fue diseñado entre una gran variedad de condiciones y concentraciones de contaminantes.

PROGRAMACION APLICADA FACTOR DE COMPRESIBILIDAD

9

Page 10: 60279646 Factor Compresibilidad Standing Katz Programacion

UMSA – FACULTAD DE INGENIERÍA DOCENTE: ING. HERMAS HERRERA

INGENIERIA PETROLERA UNIV.: JORGE GAMBARTE ARANCIBIA

Método de BURNETT .-

Donde:

Método de HAKINSON-THOMAS-PHILLIPS .-

PROGRAMACION APLICADA FACTOR DE COMPRESIBILIDAD

10

Page 11: 60279646 Factor Compresibilidad Standing Katz Programacion

UMSA – FACULTAD DE INGENIERÍA DOCENTE: ING. HERMAS HERRERA

INGENIERIA PETROLERA UNIV.: JORGE GAMBARTE ARANCIBIA

Esta ecuación puede ser resuelta utilizando el método iterativo de Newton-Raphson.5. DESARROLLO.-

DIAGRAMA DE FLUJO.-

PROGRAMACION APLICADA FACTOR DE COMPRESIBILIDAD

11

INICIO

FIN

DEF. Z,Pr,Tr,A,B,C,D,…

A

SALIR

LEER P,T,# DE COMPONENTES

CLICKINTROD. Yi

Page 12: 60279646 Factor Compresibilidad Standing Katz Programacion

UMSA – FACULTAD DE INGENIERÍA DOCENTE: ING. HERMAS HERRERA

INGENIERIA PETROLERA UNIV.: JORGE GAMBARTE ARANCIBIA

PROGRAMACION APLICADA FACTOR DE COMPRESIBILIDAD

12

A

LEER For A = 1 To NUMERO DE COMPONENTES REJAS.TextMatrix(A, 1) = InputBox("celda[" & A & "," & 1 & "]= ")

CLICKINTROD.T

c

B

CLICKINTROD.Pc

A

A

LEER For A = 1 To NUMERO DE COMPONENTES REJAS.TextMatrix(A, 1) = InputBox("celda[" & A & "," & 2 & "]= ")

LEER For A = 1 To NUMERO DE COMPONENTES REJAS.TextMatrix(A, 1) = InputBox("celda[" & A & "," & 3 & "]= ")

CLICKCALCULAR Pr Y Tr

Page 13: 60279646 Factor Compresibilidad Standing Katz Programacion

UMSA – FACULTAD DE INGENIERÍA DOCENTE: ING. HERMAS HERRERA

INGENIERIA PETROLERA UNIV.: JORGE GAMBARTE ARANCIBIA

PROGRAMACION APLICADA FACTOR DE COMPRESIBILIDAD

13

REJAS.TextMatrix(A, 4) = .TextMatrix(A, 1) * .TextMatrix(A, 2)ty = ty + .TextMatrix(A, 4).TextMatrix(A + 1, 4) = ty

REJAS.TextMatrix(A, 5) = .TextMatrix(A, 1) * .TextMatrix(A, 3)

treducida = t / ty

MOSTRAR Text4.Text = treducida

Preducida =Pt /Py

Text5.Text = Preducida

CC

CLICK CALCULAR

A

TRAZAR LINEA Pr=VALOR PrFactorz.Line (Pr1, 0)-(Pr1, Factorz.Height)

CLICK TRAZAR Tr

A

D

Page 14: 60279646 Factor Compresibilidad Standing Katz Programacion

UMSA – FACULTAD DE INGENIERÍA DOCENTE: ING. HERMAS HERRERA

INGENIERIA PETROLERA UNIV.: JORGE GAMBARTE ARANCIBIA

6. GUIA DEL PROGRAMA.-

PROGRAMACION APLICADA FACTOR DE COMPRESIBILIDAD

14

TRAZAR LINEA Tr=VALOR Tr(INICIAL)h = Az = CLine1.y1 = hLine1.Y2 = hh = A + lineasz = C - 0.005

E

Tr(CALCULADO)=Tr(GRFICA)

D

E

MOSTRARText6.Text = hText8.Text = z

MOSTRAR"ELVALOR DE z DE LA GRAFICA ES=" = z

A

Page 15: 60279646 Factor Compresibilidad Standing Katz Programacion

UMSA – FACULTAD DE INGENIERÍA DOCENTE: ING. HERMAS HERRERA

INGENIERIA PETROLERA UNIV.: JORGE GAMBARTE ARANCIBIA

El usuario que inicie el programa encontrara la siguiente interface de usuario donde deberá seguir los siguientes pasos:

1. Deberá introducir la presión (psia), la temperatura (°R) y el número de componentes.

2. Una vez definido el número de componentes deberá introducir la fracción molar, las condiciones críticas de cada componente haciendo click en su botón respectivo.

PROGRAMACION APLICADA FACTOR DE COMPRESIBILIDAD

15

Page 16: 60279646 Factor Compresibilidad Standing Katz Programacion

UMSA – FACULTAD DE INGENIERÍA DOCENTE: ING. HERMAS HERRERA

INGENIERIA PETROLERA UNIV.: JORGE GAMBARTE ARANCIBIA

PROGRAMACION APLICADA FACTOR DE COMPRESIBILIDAD

16

Page 17: 60279646 Factor Compresibilidad Standing Katz Programacion

UMSA – FACULTAD DE INGENIERÍA DOCENTE: ING. HERMAS HERRERA

INGENIERIA PETROLERA UNIV.: JORGE GAMBARTE ARANCIBIA

3. Una vez completados estos datos debemos calcular las propiedades reducidas Ppr y Tpr haciendo click en el botón respectivo.

PROGRAMACION APLICADA FACTOR DE COMPRESIBILIDAD

17

Page 18: 60279646 Factor Compresibilidad Standing Katz Programacion

UMSA – FACULTAD DE INGENIERÍA DOCENTE: ING. HERMAS HERRERA

INGENIERIA PETROLERA UNIV.: JORGE GAMBARTE ARANCIBIA

4. Para poder determinar el factor de compresibilidad es necesario apretar el botón Cálculo de Z .

PROGRAMACION APLICADA FACTOR DE COMPRESIBILIDAD

18

Page 19: 60279646 Factor Compresibilidad Standing Katz Programacion

UMSA – FACULTAD DE INGENIERÍA DOCENTE: ING. HERMAS HERRERA

INGENIERIA PETROLERA UNIV.: JORGE GAMBARTE ARANCIBIA

5. Finalmente teniendo el gráfico Standing – Katz podemos comprobar la veracidad del resultado:

PROGRAMACION APLICADA FACTOR DE COMPRESIBILIDAD

19

Page 20: 60279646 Factor Compresibilidad Standing Katz Programacion

UMSA – FACULTAD DE INGENIERÍA DOCENTE: ING. HERMAS HERRERA

INGENIERIA PETROLERA UNIV.: JORGE GAMBARTE ARANCIBIA

7. DATOS DE PRUEBA.-

EJEMPLO 1:

Un reservorio de gas contiene la siguiente composición de gas; la presión y temperatura del reservorio son 3000 psia y 640°R respectivamente.

PROGRAMACION APLICADA FACTOR DE COMPRESIBILIDAD

20

Page 21: 60279646 Factor Compresibilidad Standing Katz Programacion

UMSA – FACULTAD DE INGENIERÍA DOCENTE: ING. HERMAS HERRERA

INGENIERIA PETROLERA UNIV.: JORGE GAMBARTE ARANCIBIA

Calcular el factor de compresibilidad del gas bajo condiciones iniciales del reservorio.

SOLUCION:

LAS PROPIEDADES PSEUDOCRITICAS SON:

Aplicando las ecuaciones pseudoreducidas determinamos:

PROGRAMACION APLICADA FACTOR DE COMPRESIBILIDAD

21

Page 22: 60279646 Factor Compresibilidad Standing Katz Programacion

UMSA – FACULTAD DE INGENIERÍA DOCENTE: ING. HERMAS HERRERA

INGENIERIA PETROLERA UNIV.: JORGE GAMBARTE ARANCIBIA

De la grafica obtenemos “Z”:

EJEMPLO 2:

Un sistema de hidrocarburo gaseoso que se encuentra a 2000 psia y 410 ºR, tiene la siguiente composición:

Componente Y Tc (ºR)

Pc(Psia)

C1 0,83 343,33 666,4C2 0,06 549,92 706,5C3 0,03 666,06 616,4

n - C4 0,02 765,62 550,6n - C5 0,02 845,6 488,6

C6 0,01 923 483C7 0,03 1189 318,4

SOLUCION:

Componente Y Tc Pc Y * Tc Y * Pc

C1 0,83 343,33 666,4 284,9639 553,112

C2 0,06 549,92 706,5 32,9952 42,39

C3 0,03 666,06 616,4 19,9818 18,492

n - C4 0,02 765,62 550,6 15,3124 11,012

n - C5 0,02 845,6 488,6 16,912 9,772

C6 0,01 923 483 9,23 4,83

C7 0,03 1189 318,4 35,67 9,552Tpc=415,06

5Ppc=649,2

Aplicando las ecuaciones pseudoreducidas determinamos:

PROGRAMACION APLICADA FACTOR DE COMPRESIBILIDAD

22

Page 23: 60279646 Factor Compresibilidad Standing Katz Programacion

UMSA – FACULTAD DE INGENIERÍA DOCENTE: ING. HERMAS HERRERA

INGENIERIA PETROLERA UNIV.: JORGE GAMBARTE ARANCIBIA

08.32.649

2000

Pr

Pr ====SC

SISTSR P

P

icaPseudocrítesión

sistemadelesiónP

47.1065.415

610 ====SC

SISTSR T

T

icaPseudocrítaTemperatur

sistemadelaTemperaturT

De la grafica obtenemos “Z”:Z=0.76

8. BIBLIOGRAFÍA.-

1. Ingeniería de reservorios TAREK-AHMED.

2. Ingeniería de reservorios HERMAS HERRERA CALLEJAS.

2. Guía de programación en Visual Basic HERMAS HERRERA CALLEJAS

PROGRAMACION APLICADA FACTOR DE COMPRESIBILIDAD

23