4.Derivadas. - UNLP · 4 Capítulo4.Derivadas. 4.1.2Velocidadinstantánea....

29
4. Derivadas. “En la medida que las teorías matemáticas se refieran a la realidad perderán certeza; y en la medida que adquieran certeza se alejarán de la realidad.” Albert Einstein (1879 - 1955) En el presente módulo nos dedicaremos a estudiar la velocidad: la velocidad a la que se mueve un objeto, la velocidad de las reacciones químicas, la velocidad de crecimiento de un cultivo bacteriano, la velocidad de propagación de una enfermedad, etc. Los ejemplos anteriores son todos ejemplos que hacen referencia a situaciones donde la variable independiente es el tiempo. El movimiento de un objeto está representado por su posición que varía en función del tiempo; la velocidad del objeto nos permite saber si el objeto se mueve rápido, despacio, si avanza o retrocede. En las reacciones químicas, se estudia la cantidad de sustancia que reacciona en función del tiempo. Hay reacciones lentas que pueden durar años y otras muy rápidas que suceden en una fracción de segundo. La concentración de un medicamento en el cuerpo es variable en función del tiempo. Los estudios farmacológicos y fisiológicos permiten estudiar cómo controlar la velocidad a la que el cuerpo “absorbe” el medicamento. En cuanto al crecimiento de un cultivo, de manera similar, se estudia el tamaño de un cultivo como función del tiempo. El crecimiento de un cultivo generalmente se mide según la densidad óptica o el área ocupada. Se estudian generalmente los factores que influyen en la velocidad de crecimiento de las poblaciones; que pueden ser la temperatura ambiente, el tipo de nutriente, la presencia de luz, etc. Las velocidad de propagación de las enfermedades también se refiere al modo en que una infección se expande en un territorio en función de tiempo medido en días, meses, años, siglos, etc. En este contexto, las velocidades negativas representan procesos donde la cantidad de infectados disminuye. Sin embargo, las relaciones funcionales en los sistemas reales no siempre refieren exclusi- vamente al tiempo como variable independiente. También se estudia la relación que existe entre variables diversas y nos interesará comprender qué representa la velocidad en esos contextos. Por ejemplo, Figura 4.1: Temperatura en función de la altura. Figura 4.2: Erlenmeyer y vasos de precipi- tado. La temperatura ambiente cambia de forma diferente según la altura respecto al nivel del mar en la que nos encontremos. Figura 4.1. La actividad de una enzima en una reacción mejora cuando se varía la temperatura hasta una cierta temperatura crítica a partir de la cual la variación de la temperatura empeora la actividad de la enzima. Al volcar un líquido en un recipiente, la altura del líquido varía según el volumen del líquido que volcamos. En el caso de un vaso de precipitado la variación de la altura se produce de manera constante; mientras que en un Erlenmeyer la altura del líquido aumenta más rápido cuanto más lleno está. Ver Figura 4.2. La forma de los recipientes y el modo en que varía (su sensibilidad) la altu- ra del líquido respecto a su volumen juega un papel importante en la pro- pagación de errores experimentales en los trabajos de laboratorio. 4.1 Estudio de la velocidad. 4.1.1 Velocidad promedio. Comenzaremos estudiando la velocidad con la que se mueve un objeto. Lo que nos interesa es estudiar el cambio de su posición con respecto al tiempo. Por simplicidad y para usar un ejemplo muy conocido que sirva de base para las futuras definiciones consideraremos un automóvil que se mueve por una ruta. Esto quiere decir que nos enfocaremos en el movimiento del auto en una única dirección: la dirección de la ruta. El auto no se mueve hacia los costados ni hacia arriba ni hacia abajo; sólo nos interesa como avanza o retrocede.

Transcript of 4.Derivadas. - UNLP · 4 Capítulo4.Derivadas. 4.1.2Velocidadinstantánea....

Page 1: 4.Derivadas. - UNLP · 4 Capítulo4.Derivadas. 4.1.2Velocidadinstantánea. Lavelocidadpromediodeterminacómovaríalaposicióndeunobjetoentredosinstantes detiempo.Enlosmovimientosunifomes

4. Derivadas.

“En la medida que las teorías matemáticas se refieran a la realidad perderán certeza;y en la medida que adquieran certeza se alejarán de la realidad.”

Albert Einstein (1879 - 1955)

En el presente módulo nos dedicaremos a estudiar la velocidad: la velocidad a la que semueve un objeto, la velocidad de las reacciones químicas, la velocidad de crecimiento de uncultivo bacteriano, la velocidad de propagación de una enfermedad, etc.

Los ejemplos anteriores son todos ejemplos que hacen referencia a situaciones donde lavariable independiente es el tiempo.

El movimiento de un objeto está representado por su posición que varía en función deltiempo; la velocidad del objeto nos permite saber si el objeto se mueve rápido, despacio,si avanza o retrocede.En las reacciones químicas, se estudia la cantidad de sustancia que reacciona en funcióndel tiempo. Hay reacciones lentas que pueden durar años y otras muy rápidas quesuceden en una fracción de segundo.La concentración de un medicamento en el cuerpo es variable en función del tiempo.Los estudios farmacológicos y fisiológicos permiten estudiar cómo controlar la velocidada la que el cuerpo “absorbe” el medicamento.En cuanto al crecimiento de un cultivo, de manera similar, se estudia el tamaño de uncultivo como función del tiempo. El crecimiento de un cultivo generalmente se midesegún la densidad óptica o el área ocupada. Se estudian generalmente los factores queinfluyen en la velocidad de crecimiento de las poblaciones; que pueden ser la temperaturaambiente, el tipo de nutriente, la presencia de luz, etc.Las velocidad de propagación de las enfermedades también se refiere al modo en queuna infección se expande en un territorio en función de tiempo medido en días, meses,años, siglos, etc. En este contexto, las velocidades negativas representan procesos dondela cantidad de infectados disminuye.

Sin embargo, las relaciones funcionales en los sistemas reales no siempre refieren exclusi-vamente al tiempo como variable independiente. También se estudia la relación que existeentre variables diversas y nos interesará comprender qué representa la velocidad en esoscontextos. Por ejemplo,

Figura 4.1: Temperatura en función de laaltura.

Figura 4.2: Erlenmeyer y vasos de precipi-tado.

La temperatura ambiente cambia de forma diferente según la altura respecto al nivel delmar en la que nos encontremos. Figura 4.1.La actividad de una enzima en una reacción mejora cuando se varía la temperatura hastauna cierta temperatura crítica a partir de la cual la variación de la temperatura empeorala actividad de la enzima.Al volcar un líquido en un recipiente, la altura del líquido varía según el volumen dellíquido que volcamos. En el caso de un vaso de precipitado la variación de la alturase produce de manera constante; mientras que en un Erlenmeyer la altura del líquidoaumenta más rápido cuanto más lleno está. Ver Figura 4.2. La forma de los recipientes y elmodo

en que varía (su sensibilidad) la altu-ra del líquido respecto a su volumenjuega un papel importante en la pro-pagación de errores experimentalesen los trabajos de laboratorio.

4.1 Estudio de la velocidad.4.1.1 Velocidad promedio.

Comenzaremos estudiando la velocidad con la que se mueve un objeto. Lo que nos interesaes estudiar el cambio de su posición con respecto al tiempo. Por simplicidad y para usar unejemplo muy conocido que sirva de base para las futuras definiciones consideraremos unautomóvil que se mueve por una ruta. Esto quiere decir que nos enfocaremos en el movimientodel auto en una única dirección: la dirección de la ruta. El auto no se mueve hacia los costadosni hacia arriba ni hacia abajo; sólo nos interesa como avanza o retrocede.

Page 2: 4.Derivadas. - UNLP · 4 Capítulo4.Derivadas. 4.1.2Velocidadinstantánea. Lavelocidadpromediodeterminacómovaríalaposicióndeunobjetoentredosinstantes detiempo.Enlosmovimientosunifomes

2 Capítulo 4. Derivadas.

La descripción del movimiento unidimensinal se realizará de la siguiente manera:

Se elige un punto de referencia sobre la ruta que represente el valor de la posición 0.Usualmente se decide ubicar el 0 en el lugar donde el auto inicia el recorrido.Se elige un sentido de la ruta para que represente los valores positivos de la posición.Se eligen unidades adecuadas para medir la distancia y el tiempo.

Con estas premisas se establece que la posición p del auto en el instante de tiempo t estádada por la función

p(t) = ±la distancia (en unidades) a la ubicación del 0 en el instante t (en unidades)

C La presencia de ± en la expresión anterior se refiere a que la posición del auto seconsidera positiva si el auto se encuentra del lado positivo elegido para la ruta y seconsidera negativa si el auto se encuentra del lado contrario.

t (min) p (km)

0 01 0.352 1,23 94 9,25 9.356 137 188 169 13

Tabla 4.1: Posición del auto (en km) enfunción del tiempo (en minutos).

Por ejemplo, en la Tabla 4.1 se representa la posición p del auto, en kilómetros, desde elpunto de partida y el tiempo t en minutos.

Actividad 4.1 Discutan con sus compañeros/as y con los docentes las siguientes proposicio-nes. Decidan si son verdaderas o falsas. En todos los casos, expliquen sus respuestas.

a) La primera fila de la tabla representa la distancia cero y el tiempo cero.b) Después de un minuto llegó a estar 0,35 km del punto de partida.c) Luego, a los dos minutos ya se encontraba a 1,2 km del punto de partida.d) Entre los minutos 3 y 5 el auto no avanzó.e) Luego acelera para lograr a los 6 minutos estar a 13 km del punto de partida.f ) Un minuto más tarde avanzó 5 km más.g) A los 8 minutos, el auto retrocedió porque la distancia al punto de partida fue de 16

km.h) El último dato que se tiene es que a los 9 minutos el auto se encuentra en la misma

posición que se encontraba a los 6 minutos de haber partido.�

En la Figura 4.3 se representan los datos de la posición (en km) del auto sobre la ruta enfunción del tiempo (en minutos).

0 2 4 6 8

0

5

10

15

t (minutos)

p(km)

Figura 4.3: La posición (en km) del auto sobre la ruta en función del tiempo (en minutos).

Page 3: 4.Derivadas. - UNLP · 4 Capítulo4.Derivadas. 4.1.2Velocidadinstantánea. Lavelocidadpromediodeterminacómovaríalaposicióndeunobjetoentredosinstantes detiempo.Enlosmovimientosunifomes

4.1 Estudio de la velocidad. 3

Calcularemos la velocidad promedio del auto entre cada par de instantes de la siguientemanera:

Definición 4.1.1 — Velocidad promedio - Recta secante.La velocidad promedio del auto entre dos instantes t1 y t2 (debemos considerar que

t1 y t2 son dos números distintos) es el cociente entre la variación de la posición y lavariación del tiempo

Vprom[t1, t2] =p(t2) − p(t1)

t2 − t1=

∆p∆t︸︷︷︸

forma abreviada

(4.1)

El símbolo ∆ (letra griega Delta) simboliza la variación de la variable a la que acompaña.

La velocidad promedio es un valor numérico que coincide con la pendiente de larecta que pasa por los puntos (t1, p(t1)) y (t2, p(t2)). Esa recta se denomina recta secante ala gráfica de la función p en esos puntos.

Figura 4.4: La velocidad prome-dio como la pendiente de la rectaque pasa por los puntos (t1, p(t1)) y(t2, p(t2)).

t (min)

p(t) (km)

pendiente=∆p∆t

p(t1)

t1

p(t2)

t2

∆p = p(t2) − p(t1)

∆t = t2 − t1

∆t

C La variación promedio entre dos instantes tiene la unidad de medida correspondiente alas que se eligieron para la posición y el tiempo. En nuestro caso corresponde.

Vprom[t1, t2] =kmmin

Actividad 4.2 Discutan las siguientes proposiciones (respecto a la Tabla 4.1). Decidan sison verdaderas o falsas. En todos los casos, expliquen sus respuesta.

a) La velocidad promedio del auto fue menor entre los instantes 0 y 2 que entre losinstantes 3 y 5.

b) La mayor velocidad promedio entre los datos registrados es la Vprom[6, 7].c) Todas las velocidades promedio registradas son positivas.d) Entre los instantes 0 y 1 y entre los instantes 3 y 5 el auto recorrió la misma cantidad

de km. Por lo tanto, laVprom[0, 1] = Vprom[3, 5]

e) La Vprom[0, 9] se puede calcular como el promedio de las velocidades promedioentre 0 y 1, entre 1 y 2, entre 2 y 3, etc. hasta 8 y 9.

Page 4: 4.Derivadas. - UNLP · 4 Capítulo4.Derivadas. 4.1.2Velocidadinstantánea. Lavelocidadpromediodeterminacómovaríalaposicióndeunobjetoentredosinstantes detiempo.Enlosmovimientosunifomes

4 Capítulo 4. Derivadas.

4.1.2 Velocidad instantánea.La velocidad promedio determina cómo varía la posición de un objeto entre dos instantes

de tiempo. En los movimientos unifomes, la velocidad promedio del objeto es la mismapara cualquier par de instantes que elijamos. En los movimientos no uniformes, la velocidadpromedio puede variar según el intervalo que tomemos.

Cuando decimos que la velocidad promedio entre los 6 y los 7 minutos es de 3,65 km/minno tenemos información precisa sobre la velocidad del auto en los instantes intermedios.Tenemos que recurrir al velocímetro interno del auto que nos indica con la aguja la velocidaden cada instante variando la inclinación de la aguja cuando aceleramos o frenamos.

Consideremos ahora otro auto en las condiciones mencionadas previamente para ladescripción del movimiento unidimensional. También en este caso consideraremos quep(0) = 0.

Pero en esta oportunidad, la posición p (en metros) del auto en cada instante t (en segundos)está dada por la fórmula

p(t) = 3t2 para t ≥ 0

La gráfica de la función p se presenta en la Figura 4.5.

t (seg)1 2 3

p (en metros)

10

20

30

0

Figura 4.5: Gráfica de la función posiciónp(t) = 3t2.

Intervalo Vprom

[1, 3]

[1, 2]

[1, 1.5]

[1, 1.2]

Tabla 4.2: Varios valores para la variaciónpromedio de la función posición p(t).

Actividad 4.3a) Calculen la Vprom[1, 3].b) Para un valor t > 1, redondeen la expresion correcta de Vprom[1, t]

3t2 − 33t2 − 3t − 1

3t2

tc) Usen la fórmula señalada anteriormente para confirmar el valor de Vprom[1, 3].

d) Completen la Tabla 4.2 y grafiquen las rectas secantes correspondientes en laFigura 4.5.

e) ¿Cuál de los valores: 12 m/s o 6.6 m/s es una mejor aproximación de la velocidadque marca el velocímetro del auto en t = 1 segundo? Explicar la respuesta.

f ) ¿Se obtiene un resultado mejor si se calcula Vprom[1, 1.1]?

g) Elijan un valor de t que mejor la precisión.

h) ¿La respuesta del item g) es la mejor de todas las aproximaciones? ¿Se puedemejorar? Si la respuesta es sí, expliquen cómo correspondería realizar esa mejora. Sila respuesta es no, explicar el razonamiento.

i) ¿Cuál es el valor de Vprom[1, t] en el caso que t = 1 segundo?

j) ¿Cuál es el valor que consideran que representa la velocidad instantánea del autoen el instante t = 1 segundo?

Page 5: 4.Derivadas. - UNLP · 4 Capítulo4.Derivadas. 4.1.2Velocidadinstantánea. Lavelocidadpromediodeterminacómovaríalaposicióndeunobjetoentredosinstantes detiempo.Enlosmovimientosunifomes

4.2 Rectas secantes y recta tangente. 5

4.2 Rectas secantes y recta tangente.

Como mencionamos previamente el valor

Vprom[1, t] =∆p∆t

representa la pendiente de la recta secante a la gráfica de la función p que pasa por los puntos

(1, p(1)) (t, p(t))

En la Figura 4.6 se representan las rectas secantes asociadas a los puntos de la Tabla 4.2.

t (seg)11.11.2 1.5 2 3

p (m)

10

20

30

0

(2, p(2))

(1.5, p(1.5))

(3, p(3))

(1, p(1))

Valores de t que se aproximan a 1.

Figura 4.6: Gráfica de la función posición p(t) = 3t2 y varias rectas secantes asociadas a lospuntos de la Tabla 4.2.

Intervalo Vprom

[1, 3] 12

[1, 2] 9

[1, 1.5] 7.5

[1, 1.2] 6.6

[1, 1.1] 6.3

[1, 1.01] 6.03

[1, 1.001] 6.003

[1, 1.0001] 6.0003

Tabla 4.3: Varios valores para la variaciónpromedio de la función posición p(t).

Definición 4.2.1 — Recta tangente - velocidad en un instante. Se denomina recta tangenteen el punto (1, p(1)) a la gráfica de una función p a la recta que pasa precisamente por elpunto (1, p(1)) y cuya pendiente coincide con el valor de la velocidad en el instante t = 1.

Vprom[1, t]︸ ︷︷ ︸Pendiente de la recta secante paralos puntos (1, p(1)) y (t, p(t)).

6︸︷︷︸Pendiente de la recta tangente en el

punto (1, p(1)).

La definición requiere determinar el valor de la pendiente de la recta tangente medianteun proceso de aproximación usando las pendientes de las rectas secantes.

Page 6: 4.Derivadas. - UNLP · 4 Capítulo4.Derivadas. 4.1.2Velocidadinstantánea. Lavelocidadpromediodeterminacómovaríalaposicióndeunobjetoentredosinstantes detiempo.Enlosmovimientosunifomes

6 Capítulo 4. Derivadas.

t (seg)1 3

p (en metros)

10

20

30

0

∆p

∆t t (seg)1 2

p (en metros)

10

20

30

0

∆p

∆t t (seg)1 1.5

p (en metros)

10

20

30

0

∆p

∆t

t (seg)11.2

p (en metros)

10

20

30

0

∆p∆t t (seg)

11.1

p (en metros)

10

20

30

0

∆p∆t t (seg)

11.01

p (en metros)

10

20

30

0

∆p∆t

Figura 4.7: Recurso Geogebra.

En el siguiente link pueden trabajar con un recurso simple que visualiza cómodeterminar la velocidad instantánea del auto en el instante t = 1 aproximando elvalor por las correspondientes velocidades promedio.https://ggbm.at/R7maabHt

Al mover el punto magenta podemos dinamizar el proceso de aproximación al punto(1, p(1)) que nos permite ir calculando los valores de las pendientes de las rectassecantes

∆p∆t[1, t]

para poder determinar el valor de la pendiente de la recta tangente.

En la Figura 4.8 se presenta otras tres gráficas de funciones con situación similar de rectatangente en un punto de su gráfica. En el caso del gráfico C la recta graficada no es la rectatangente.

Figura 4.8: Tres casos que aceptan recta tangente en el punto (2, 4) perteciente a la gráfica.

Page 7: 4.Derivadas. - UNLP · 4 Capítulo4.Derivadas. 4.1.2Velocidadinstantánea. Lavelocidadpromediodeterminacómovaríalaposicióndeunobjetoentredosinstantes detiempo.Enlosmovimientosunifomes

4.2 Rectas secantes y recta tangente. 7

En la Figura 4.9 vemos tres situaciones en donde no hay recta tangente en el punto (3, 2)(perteneciente a la gráfica de la función). Las situaciones A y B seguramente no presentendudas a los lectores pero la última (situación C) suele llevar a muchas discusiones.

Figura 4.9: En ninguna de estas situaciones la curva posee recta tangente en el punto (3, 2).

Actividad 4.4 ¿Qué argumento pueden dar para explicar por qué no hay recta tangente en elpunto (3, 2) en ninguno de los casos de la Figura 4.9?

4.2.1 Recta tangente.

En esta sección generalizaremos las nociones anteriores para el caso de funciones numéricasde la forma y = f (x).

Definición 4.2.2 — Recta tangente al gráfico de una función. Supongamos que el dominio dela función f contiene un intervalo abierto que contiene al número a.

Supongamos además que existe un número ma tal que para puntos b , a en el intervalo,

cuando b se aproxima a a entoncesf (b) − f (a)

b − ase aproxima a ma .

Entonces ma es la pendiente de la recta tangente a la gráfica de f en (a, f (a)).

El gráfico de y = ma (x − a) + f (a) es la recta tangente a la gráfica de f en (a, f (a)).

Usaremos la notación de lı́m de la siguiente forma

cuando b −→ a entoncesf (b) − f (a)

b − a−→ ma .

Se escribe de manera compacta

lı́mb→a

f (b) − f (a)b − a

= ma

Page 8: 4.Derivadas. - UNLP · 4 Capítulo4.Derivadas. 4.1.2Velocidadinstantánea. Lavelocidadpromediodeterminacómovaríalaposicióndeunobjetoentredosinstantes detiempo.Enlosmovimientosunifomes

8 Capítulo 4. Derivadas.

Figura 4.10: Recta tangente en elpunto (a, f (a)) a la gráfica de la fun-ción f .

x

f Recta tangentey = ma(x − a) + f (a)

a

f (a)(a, f (a))

C La frase

cuando b se aproxima a a entoncesf (b) − f (a)

b − ase aproxima a ma .

permite conectar la geometría y el cálculo asociado al problema de determinar lavelocidad instantánea de un móvil. Por ahora la usaremos como idea intuitiva; enocasiones diremos “está cerca de” en vez de “se aproxima a” pero estaremos refiriendoa lo mismo.

� Ejemplo 4.1 Consideremos la función f (x) = x2 y el punto (1, f (1)) perteneciente a sugráfica. Para hallar la ecuación de la recta tangente a la gráfica de f en el punto (1, 1)debemos encontrar el valor de ma (la pendiente) para escribir la ecuación

y = ma (x − 1) + f (1).

Comenzamos calculando la pendiente de una recta secante que pase por el punto(1, f (1)) y por un punto de la forma (x, f (x)) con x , 1

Vprom[1, x] =∆ f∆x[1, x] =

f (x) − f (1)x − 1

=x2 − 1x − 1

=(x − 1)(x + 1)

x − 1=

= x + 1 ¿Se aproxima a algún valor cuandox se aproxima a 1?

Por lo tanto,ma = lı́m

x→1

f (x) − f (1)x − 1

= lı́mx→1

x + 1 = 2

La pendiente de la recta tangente a la parábola y = x2 en el punto (1, 1) es 2, por loque la ecuación de la recta tangente es y = 2(x − 1) + 1.

Actividad 4.5 Realicen la gráfica de la parábola y = x2 y la recta tangente en el punto (1, 1).�

Page 9: 4.Derivadas. - UNLP · 4 Capítulo4.Derivadas. 4.1.2Velocidadinstantánea. Lavelocidadpromediodeterminacómovaríalaposicióndeunobjetoentredosinstantes detiempo.Enlosmovimientosunifomes

4.2 Rectas secantes y recta tangente. 9

Actividad 4.6 Para dar un poco de sentido a la expresión “aproximar” respondan lassiguientes preguntas usando la intuición sobre los valores que se piden.

a) Cuando b se aproxima a 4, ¿a qué número se aproxima 3b?b) Cuando b está cerca de 5, ¿de qué número está cerca b3?c) Cuando b está cerca de 5, ¿de qué número está cerca 3b + b3?

d) Cuando b se acerca a 0, ¿a qué número se acercab2

b?

e) Cuando b está cerca de 3, ¿a qué número se aproxima2b?

Nota: La respuesta no es 0.66 ni 0.67.�

¿Cómo respondieron a la pregunta del inciso c)? Una opción habrá sido quizás tomarvalores de b aproximados a 5 y cada vez más cercanos, para luego calcular 3b+b3. Por ejemplo:si consideramos 4.99 entonces 3 4.99 + 4.993 = 139.22. Si tomamos 4.99999 (más cercanoa 5 que el anterior) entonces 3 4.99999 + 4.999993 = 139.99922. Es razonable pensar que3b+ b3 se acerca a 140 si b se acerca a 5. En esta caso también es posible evaluar directamentela expresión 3b + b3 por b = 5 y obtener 3 5 + 53 = 140.

2

.25

0

(2, 14 )

(x, 1x2 )

Figura 4.11: Gráfica de la función f (x) =1x2 y la recta secante que pasa por los puntos(2, 1

4

)y

(x, 1

x2

).

� Ejemplo 4.2 Determinaremos la ecuación de la recta tangente a la gráfica de la función

f (x) =1x2

(2, 1

4

).

La Figura 4.11 presenta una parte (la correspondiente al cuadrante I) de la gráficade la función y la recta secante que pasa por los puntos

(2, 1

4

)y

(x, 1

x2

)para un x , 2.

Para determinar la pendiente de la recta secante escribimos

∆ f∆x[2, x] =

f (x) − f (2)x − 2

=

1x2 −

14

x − 2=

4−x2

4x2

x − 2=

4 − x2

4x2(x − 2)

=(2 − x)(2 + x)

4x2(x − 2)=

−1︷ ︸︸ ︷���(2 − x)(2 + x)

4x2���(x − 2)︸ ︷︷ ︸1

=−(2 + x)

4x2

Entonces lı́mx→2

∆ f∆x[2, x] =

−(2 + 2)4 22 = −

14.

La ecuación de la recta que estamos buscando es y = − 14 (x − 2) + 1

4 . �

Actividad 4.7 En los siguientes casos, determinen la ecuación de la recta tangente a lagráfica de la función f en el punto indicado. Realicen las gráficas de las funciones y lasrectas tangentes.

a) f (x) =1x

en el punto (1, 1). b) f (x) =1x

para x = −1.

c) f (x) =2x − 4x − 1

para x = 2. d) f (x) =√

x en el punto (4, 2)�

Page 10: 4.Derivadas. - UNLP · 4 Capítulo4.Derivadas. 4.1.2Velocidadinstantánea. Lavelocidadpromediodeterminacómovaríalaposicióndeunobjetoentredosinstantes detiempo.Enlosmovimientosunifomes

10 Capítulo 4. Derivadas.

4.3 Límites.Nos proponemos trabajar con la frase que utilizamos en la sección anterior para definir la

pendiente de la recta tangente a la gráfica de la función f en el punto (a, f (a)) como un límite.Recordemos que tomamos un valor de b , a y escribimos:

cuando b se aproxima a a entoncesf (b) − f (a)

b − ase aproxima a ma .

Que de manera compacta resulta

lı́mb→a

f (b) − f (a)b − a

= ma

Actividad 4.8 Discutan en el grupo con sus compañeros/as y con los docentes las siguientespreguntas relacionadas con la expresión b→ a.

a) ¿Quién se aproxima a quién? ¿Quién se mueve y quién se queda quieto?b) ¿Por que se debe considerar que b , a?c) ¿Es importante que b > a? ¿Puede ser b < a?

La expresión b→ a expresa un proceso dinámico, de movimiento. No es estático. No esevaluar f (2.1) y listo. Es considerar a la variable b como un número que se mueve hacia a,aproximándose.

2b −→ ←− b

Sin embargo, vamos a tener que diferenciar lo siguiente:

Definición 4.3.1 — Límite b→ a b→ a+ b→ a−.Decimos que la variable b tiende a a cuando podemos asegurar que la distancia entre b ya puede hacerse tan pequeña como uno quiera. No hacemos diferencia aquí si b es másgrande o más chico que a.

Escribiremos b −→ a. También se dice que a es el límite de b.

Diremos que la variable b tiende por derecha a a cuando sabemos que b −→ a peroademás b es siempre mayor a a.

Escribiremos b −→ a+. También se dice que a es el límite por derecha de b.

Diremos que la variable b tiende por izquierda a a cuando sabemos que b −→ a peroademás b es siempre menor a a.

Escribiremos b −→ a−. También se dice que a es el límite por izquierda de b.

a

b<a︷ ︸︸ ︷b −→ a−

b>a︷ ︸︸ ︷a+ ←− b

C En las notaciones en las que usamos la flecha −→ hay que destacar/remarcar que

b︸︷︷︸Se mueve

−→ a︸︷︷︸Está quieto

Page 11: 4.Derivadas. - UNLP · 4 Capítulo4.Derivadas. 4.1.2Velocidadinstantánea. Lavelocidadpromediodeterminacómovaríalaposicióndeunobjetoentredosinstantes detiempo.Enlosmovimientosunifomes

4.3 Límites. 11

C La palabra límite tiene muchos significados en nuestro idioma castellano. En generalasociamos la palabra límite con las ideas de: frontera, límite geográfico, poner límites,poner un tope, velocidad límite como velocidad máxima. Sin embargo, cuando decimos“a es el límite de b” no estamos haciendo referencia a ninguno de los casos anteriores: ano es la frontera de b, a no es el tope de b, etc.En sentido matemático, el significado de la palabra límite está asociado más a la idea deobjetivo o a dónde queremos llegar.“Queremos que b llegue a a". “Nuestro objetivoes que b alcance a a”.Tendremos que acostumbranos a este nuevo significado de la palabra; que a menudo, sino estamos atentos o atentas, causará confusión.

Definimos entonces el límite de una función numérica f para x → a.

xc da

y

L

y = f (x)

x → a a← x

f(x)→

L

f(x)→

L

Figura 4.12: Esquema para representar quef (x) → L cuando x → a.

Definición 4.3.2 — Límite de f (x) cuando x −→ a.Dada una función f definida, al menos, en (c, d) − {a} decimos

lı́mx→a

f (x) = L

si los valores f (x) están tan cerca como se quiera del valor L , siempre que los valores de xestán suficientemente cerca de a.

Ver Figura 4.12.

En forma similar se definen los límites laterales:

x

da

y

L

y = f (x)

a+ ← x

Figura 4.13: Esquema para representar quef (x) → L cuando x → a+ (por derecha).

xc a

y

Ly = f (x)

x → a−

Figura 4.14: Esquema para representar quef (x) → L cuando x → a− (por izquierda).

Definición 4.3.3 — Límite lateral por derecha de f (x) cuando x −→ a.Dada una función f definida, al menos, en un intervalo (a, d) decimos

lı́mx→a+

f (x) = lı́mx→ax>a

f (x) = L

si los valores f (x) están tan cerca como se quiera del valor L , siempre que los valores de xestán suficientemente cerca de a con la condición que x > a (los x están a la derecha de a).

Ver Figura 4.13.

Definición 4.3.4 — Límite lateral por izquierda de f (x) cuando x −→ a.Dada una función f definida, al menos, en un intervalo (c, a) decimos

lı́mx→a−

f (x) = lı́mx→ax<a

f (x) = L

si los valores f (x) están tan cerca como se quiera del valor L , siempre que los valores de xestán suficientemente cerca de a con la condición que x < a (los x están a la izquierdade a).

Ver Figura 4.14.

El límite de una función f puede NO existir cuando x → a por varios motivos. El Teorema4.3.1 establece un primer resultado teórico para determinar la existencia o no del límite de unafunción.

Teorema 4.3.1 Dada una función f definida, al menos, en (c, d) − {a} entonces son equiva-lentes las siguientes afirmaciones

Existe el límite lı́mx→a

f (x) y es igual al valor L.Existen ambos límites laterales lı́m

x→a+f (x) y lı́m

x→a−f (x) y son iguales al valor L.

Page 12: 4.Derivadas. - UNLP · 4 Capítulo4.Derivadas. 4.1.2Velocidadinstantánea. Lavelocidadpromediodeterminacómovaríalaposicióndeunobjetoentredosinstantes detiempo.Enlosmovimientosunifomes

12 Capítulo 4. Derivadas.

Nos parecemás importante que incorporen las nociones de límites, antes que las definiciones.Es necesario que construyan su propia intuición acerca del manejo de límites, y luego logrenasociar esa intuición con las definiciones formales.

4.4 Álgebra de límites y combinación de funciones.En ocasiones es útil reconocer que una función está formada de varias partes o componentes.

Identificar, por ejemplo, a una función como la suma, diferencia, producto o cociente dedos funciones puede ser relativamente simple y en ocasiones, el tratamiento de cada una deestas partes por separado contribuye a la simplificación del análisis de interés. Por ejemplo,investigadores que monitorean la producción anual de granos en cierta región del país,descomponen la producción en el producto entre la cantidad de hectáreas plantadas y elrendimiento por hectárea.

Producción total de maíz = Hectáreas plantadas con maíz × Rendimiento por hectárea

Los factores que influyen en la cantidad de hectáreas plantadas (programas gubernamentales,precio proyectado del maíz, entre otros) son cualitativamente diferentes de los factores queinfluyen en el rendimiento por hectárea (genética del maíz, prácticas de labranza y clima).

4.4.1 Combinaciones aritméticas de funciones o álgebra de funciones.Dos funciones f y g pueden combinarse para construir nuevas funciones,

f + g f − g f gfg,

de manera similar a la que sumamos, restamos, multiplicamos y dividimos números reales.

Definición 4.4.1 — Álgebra de funciones.Dadas dos funciones f (x) y g(x), con Dom( f ) = A y Dom(g) = B, se define

( f + g)(x) = f (x) + g(x) ( f − g)(x) = f (x) − g(x).

Para que estas funciones estén bien definidas, x debe estar tanto en el dominio de fcomo en el dominio de g, es decir, Dom( f + g) = Dom( f − g) = A ∩ B.

Análogamente se define,

( f g)(x) = f (x)g(x)(

fg

)(x) =

f (x)g(x)

.

En el primer caso se tiene que Dom( f g) = A ∩ B, pero como no podemos dividir por

0, Dom(

fg

)= {x ∈ A ∩ B : g(x) , 0}.

� Ejemplo 4.3 Si f (x) =√

x − 2 y g(x) = x2 + 1 entonces

( f + g)(x) =√

x − 2 + x2 + 1

Con Dom( f + g) =

Dom( f )︷ ︸︸ ︷[2,+∞)∩ (−∞,+∞)︸ ︷︷ ︸

Dom(g)

= [2,+∞).

Page 13: 4.Derivadas. - UNLP · 4 Capítulo4.Derivadas. 4.1.2Velocidadinstantánea. Lavelocidadpromediodeterminacómovaríalaposicióndeunobjetoentredosinstantes detiempo.Enlosmovimientosunifomes

4.4 Álgebra de límites y combinación de funciones. 13

� Ejemplo 4.4 Si f (x) = x3 y g(x) = x − 3 entonces

( f g)(x) = x3(x − 3) y(

fg

)(x) =

x3

x − 3.

Con Dom( f g) = R ∩ R = R.

Y Dom(

fg

)= R − {3} Porque g se anula en x = 3.

Actividad 4.9 Calculen, en cada caso, las funciones f + g, f − g, f g y f /g. Establezcansus dominios.

a) f (x) = x3 + 2x2 y g(x) = 3x2 − 1 b) f (x) =√

3 − x y g(x) =√

x2 − 1�

4.4.2 Propiedades algebraicas de los límites.

A continuación presentaremos algunas propiedades de límites que usaremos en numerosasocasiones a lo largo del curso.

Las propiedades algebraicas se dicenverbalmente como sigue:

El límite de la suma es la su-ma de los límites.El límite de la diferencia esla diferencia de los límites.El límite de una constante poruna función es la constantepor el límite de la función.El límite de un producto es elproducto de los límites.El límite de un cociente es elcociente de los límites (siem-pre que el límite del denomi-nador no sea cero).

Propiedad 4.4.1 — Propiedades algebraicas de los límites.Sean f y g dos funciones. Supongamos que c es una constante y que existen los límites

lı́mx→a

f (x) lı́mx→a

g(x)

Entoncesa) lı́m

x→a[ f (x) + g(x)] = lı́m

x→af (x) + lı́m

x→ag(x)

b) lı́mx→a[ f (x) − g(x)] = lı́m

x→af (x) − lı́m

x→ag(x)

c) lı́mx→a[c f (x)] = c lı́m

x→af (x)

d) lı́mx→a[ f (x)g(x)] = lı́m

x→af (x) . lı́m

x→ag(x)

e) Si lı́mx→a

g(x) , 0 entonces lı́mx→a

f (x)g(x)

=lı́mx→a f (x)lı́mx→a g(x)

.

� Ejemplo 4.5 Si lı́mx→3

f (x) = 2 y lı́mx→3

g(x) = −3, se tiene que

lı́mx→3[ f (x) + g(x)] = lı́m

x→3f (x) + lı́m

x→3g(x) = 2 + (−3) = −1

lı́mx→3[ f (x)g(x)] = lı́m

x→3f (x). lı́m

x→3g(x) = 2.(−3) = −6

lı́mx→3

f (x)g(x)

=lı́mx→3 f (x)lı́mx→3 g(x)

=2−3

porque lı́mx→3

g(x) , 0.�

Figura 4.15: Gráfica de las funcionesf y g.

Actividad 4.10 Usando las propiedades de límites y los gráficos de las funciones f y g quese encuentran en la Figura 4.15, calculen los siguientes límites (si es que existen).

a) lı́mx→−2[ f (x) + 5g(x)] b) lı́m

x→1[ f (x)g(x)] c) lı́m

x→2

f (x)g(x) + 1

Page 14: 4.Derivadas. - UNLP · 4 Capítulo4.Derivadas. 4.1.2Velocidadinstantánea. Lavelocidadpromediodeterminacómovaríalaposicióndeunobjetoentredosinstantes detiempo.Enlosmovimientosunifomes

14 Capítulo 4. Derivadas.

Si usamos la propiedad del producto repetidas veces se tiene la siguiente propiedad.

Propiedad 4.4.2 Para n un número entero positivo. Si existe lı́mx→a

f (x) entonces

lı́mx→a[ f (x)]n =

[lı́mx→a

f (x)]n

Otra propiedad, similar a la anterior, pero relacionada con las raíces es

Propiedad 4.4.3 Para n un número entero positivo. Si existe lı́mx→a

f (x) entonces

lı́mx→a

n√

f (x) = n

√lı́mx→a

f (x)

En el caso que n sea par se necesita agregar las condidiones adicionales para que lasoperaciones estén definidas. Debe ser f (x) ≥ 0 y lı́m

x→af (x) ≥ 0.

Por último, dos límites especiales

Propiedad 4.4.4lı́mx→a

c = c lı́mx→a

x = a

Los límites de la proposición anterior resultan muy sencillos de analizar desde el punto devista intuitivo y usando el desarrollo del inicio de la sección. Pueden decirse en palabras orealizar las gráficas de las funciones y = c e y = x.

� Ejemplo 4.6 Calculemos el lı́mx→5(2x2 − 3x + 4).

Desarrollamos aplicando las propiedades de la suma, resta potencias y multiplicaciónpor una constante dado que todos los límites involucrados existen según la Propiedad4.4.4.

lı́mx→5(2x2 − 3x + 4) = lı́m

x→52x2 − lı́m

x→53x + lı́m

x→54

= 2 lı́mx→5

x2 + 3 lı́mx→5

x + lı́mx→5

4 = 2 (5)2 + 3 (5) + 4 = 69.

� Ejemplo 4.7 Calculamos el lı́mx→−2

x3 + 2x2 − 15 − 3x

.Dado que se trata de un cociente, y viendo que lı́m

x→−25 − 3x = 11 es distinto de 0

podemos usar la propiedad del cociente; y posteriormente las propiedades de suma,resta, muliplicación por una constante y las potencias.

lı́mx→−2

x3 + 2x2 − 15 − 3x

=lı́mx→−2(x3 + 2x2 − 1)

lı́mx→−2 5 − 3x

=lı́mx→−2 x3 + lı́mx→−2 2x2 − lı́mx→−2 1

11

=(−2)3 + 2 lı́mx→−2 x2 − lı́mx→−2 1)

11

=−8 + 2(−2)2 − 1

11= −

111

Page 15: 4.Derivadas. - UNLP · 4 Capítulo4.Derivadas. 4.1.2Velocidadinstantánea. Lavelocidadpromediodeterminacómovaríalaposicióndeunobjetoentredosinstantes detiempo.Enlosmovimientosunifomes

4.4 Álgebra de límites y combinación de funciones. 15

� Ejemplo 4.8 Calculemos el lı́mx→0

4√

x2 + 4.En este caso usaremos primero la Propiedad 4.4.3 correspondiente a las raíces dado

que x2 + 4 ≥ 0 y lı́mx→0

x2 + 4 = lı́mx→0

x2 + lı́mx→0

4 = 4 ≥ 0.

lı́mx→0

4√

x2 + 4 = 4√

lı́mx→0(x2 + 4) = 4√4

Actividad 4.11 Calculen los valores indicados según la información de la gráfica. Den unaexplicación en los casos que no existan.

a) f (−1) b) lı́mx→−1+

f (x) c) lı́mx→−1−

f (x) d) lı́mx→−1

f (x)

e) f (2) f ) lı́mx→2

f (x) g) f (4) h) lı́mx→4

f (x)

i) f (6) j) lı́mx→6

f (x) k) f (7) l) lı́mx→7+

f (x)

m) lı́mx→7−

f (x) n) lı́mx→7

f (x)

Actividad 4.12 A partir de la información suministrada en cada inciso calculen los límitessolicitados indicando las propiedades utilizadas.

a) Si lı́mx→4

f (x) = −1 y lı́mx→4

g(x) = 5, calculen lı́mx→4

(f (x) −

25g(x)

).

b) Si lı́mx→a

f (x) = 5 y lı́mx→a

g(x) = −2, calculen lı́mx→a

f (x)g(x) − 2f (x) − g(x)

.�

Propiedad 4.4.5 — Funciones polinomiales y funciones racionales. Si f es una función poli-nomial o una función racional y a pertenece al dominio de f , entonces

lı́mx→a

f (x) = f (a) (4.2)

Page 16: 4.Derivadas. - UNLP · 4 Capítulo4.Derivadas. 4.1.2Velocidadinstantánea. Lavelocidadpromediodeterminacómovaríalaposicióndeunobjetoentredosinstantes detiempo.Enlosmovimientosunifomes

16 Capítulo 4. Derivadas.

� Ejemplo 4.9 Podemos calcularlı́mx→1(x3 − 3x + 2) = 13 − 3.1 + 2 = 1 − 3 + 2 = 0

lı́mx→8

x − 3x=

8 − 38=

58

dado que 8 pertenece al dominio dex − 3

x�

Por último, como ya hemos ejercitado en el Ejemplo 4.1 en el que trabajamos con la

función f (x) =x2 − 1x − 1

vemos que

lı́mx→1

x2 − 1x − 1

= lı́mx→1

(x − 1)(x + 1)x − 1

= lı́mx→1(x + 1) = 1 + 1 = 2.

Es decir, pudimos calcular el valor del límite usando una función más simple, g(x) = x + 1.Esto es válido porque f (x) = g(x) para todo x , 1. Y para calcular el límite x −→ 1 no sedebe considerar x = 1. En general, tenemos el siguiente resultado:

Propiedad 4.4.6 Si f (x) = g(x) para x , a, entonces

lı́mx→a

f (x) = lı́mx→a

g(x), siempre que alguno de los dos límites exista.

� Ejemplo 4.10 Calculemos el lı́mx→1

g(x) para g(x) =

x + 1 si x , 1

π si x = 1.

Aquí vemos que g está definida en x = 1 y g(1) = π, pero el valor del límite cuandox tiende a 1 se deben calcular con g(x) = x + 1 porque se considera x , 1,

lı́mx→1

g(x) = lı́mx→1(x + 1) = 2.

� Ejemplo 4.11 Calculemos ahora lı́mh→0

(3 + h)2 − 9h

.

Si definimos f (h) =(3 + h)2 − 9

hno podemos calcular el lı́m

h→0f (h) evaluando f (0)

porque la función no está definida en h = 0. Pero si trabajamos algebraicamente lafunción, llegamos a que

f (h) =(3 + h)2 − 9

h=

9 + 6h + h2 − 9h

=6h + h2

h=

h(6 + h)h

= 6 + h,

si h , 0. (Recordemos que sólo consideramos h , 0 cuando h tiende a 0). Luego

lı́mh→0

(3 + h)2 − 9h

= lı́mh→0(6 + h) = 6.

Actividad 4.13 Trabajando algebraicamente, calculen los siguientes límites aplicando laPropiedad 4.4.6.

a) lı́mx→2(x + 1)

x2 + x − 6x2 − 4

b) lı́mx→3

x3 − 27x − 3

c) lı́mx→1+

x − 1√

x − 1d) lı́m

y→−1

√y2 + 8 − 3y + 1

Page 17: 4.Derivadas. - UNLP · 4 Capítulo4.Derivadas. 4.1.2Velocidadinstantánea. Lavelocidadpromediodeterminacómovaríalaposicióndeunobjetoentredosinstantes detiempo.Enlosmovimientosunifomes

4.5 La derivada como un límite. 17

4.5 La derivada como un límite.Usando la definición de límite podemos recordar la definición de pendiente de la recta

tangente a la gráfica de una función y de velocidad instantánea de una función de la siguientemanera:

Definición 4.5.1 — Cociente incremental. Dada una función f definida en un intervaloabierto (c, d). Dados a y x en (c, d), dos números reales distintos dentro del intervalo, sedenomina cociente incremental de f en el intervalo [a, x] al cociente

f (x) − f (a)x − a

=∆ f∆x= Vprom[a, x] (4.3)

El cociente incremental de f en el intervalo [a, x] representa la velocidad promediode f en el intervalo [a, x] o la pendiente de la recta secante entre los puntos de abscisa ay x. También se denomina variación promedio de f en el intervalo [a, x].

Definición 4.5.2 — Pendiente de la recta tangente - Velocidad instántea. Dada una función fdefinida en un intervalo abierto (c, d). Dado a ∈ (c, d), un número real dentro del intervalo,se define la pendiente de la recta tangente a la gráfica de f en el punto (a, f (a)) como elnúmero real ma (en el caso que exista) determinado por el valor del siguiente límite

lı́mx→a

f (x) − f (a)x − a

= lı́mx→a

∆ f∆x= lı́m

x→aVprom[a, x] = ma (4.4)

El número ma determina también la variación instantánea de la función f en x = a.

Para determinar la pendiente de la recta tangente a la gráfica de la función f (x) = x2 + 2en el punto (a, f (a)) = (a, a2 + 2) calculamos

lı́mx→a

f (x) − f (a)x − a

= lı́mx→a

(x2 + 2) − (a2 + 2)x − a

= lı́mx→a

x2 − a2

x − a= lı́m

x→a

(x − a)(x + a)x − a

= lı́mx→a(x + a) = a + a = 2a (4.5)

a ma = 2a

1 20 0-1 -22 4...

...

Tabla 4.4: Valores de ma.

Por lo tanto ma = 2a. La ecuación de la recta tangente a la gráfica de f en el punto (a, f (a)) es

y = ma(x − a) + f (a)

y = 2a(x − a) + a2 + 2

En particular, si consideramos a = 1, la ecuación de la recta tangente a la gráfica de f enel punto (1, 3) es

y = 2(x − 1) + 3⇐⇒ y = 2x + 1

.Podemos calcular distintos valores de ma como se muestra en la Tabla 4.4 y obtener las

ecuaciones de las rectas tangentes en los puntos correspondientes como sigue:

a = 1 −→ m1 = 2 −→ y = 2(x − 1) + 3⇔ y = 2x + 1

a = 0 −→ m0 = 0 −→ y = 0(x − 0) + 2⇔ y = 2

a = −1 −→ m−1 = −2 −→ y = −2(x + 1) + 3⇔ y = −2x + 1

a = 2 −→ m2 = 4 −→ y = 4(x − 2) + 6⇔ y = 4x + 2

Ecuaciones de las rectas tangente a lagráfica de f en los puntos (a, f (a)).

Page 18: 4.Derivadas. - UNLP · 4 Capítulo4.Derivadas. 4.1.2Velocidadinstantánea. Lavelocidadpromediodeterminacómovaríalaposicióndeunobjetoentredosinstantes detiempo.Enlosmovimientosunifomes

18 Capítulo 4. Derivadas.

En la Figura 4.16 se representan las cuatro rectas tangentes calculadas previamente.

x

yf (x) = x2 + 2

y = 2x + 1

y = 2

y = −2x + 1

y = 4x + 2

Figura 4.16: Recta tangente a la gráfica de la función f (x) = x2 + 2 en el punto (a, a2) paraa = −1, 0, 1 y 2.

Tengan presente que siempre secumple que

Dom( f ′) ⊆ Dom( f )

O sea, en cualquier caso, el dominiode la función derivada es unsubconjunto del dominio de la

función. No puede ser más grande.

Definición 4.5.3 — Función derivada. Dada f una función cuyo dominio es algún intervaloabierto (c, d). Se define como derivada de f a la función definida por la regla

a 7−→ ma

Existen varias formas de escribir a la función derivada. En este curso usaremos lassiguientes notaciones

f ′ =dfdx

f ′(a) =dfdx(a) = ma

Si la variable independiente se denota por la letra x entonces se dice que es la derivadade f respecto a x.

En este caso el dominio de la función f ′ está formado por todos los valores en eldominio de f para los cuales existe el límite del cociente incremental 4.3.

Si la función f admite derivada en x0 se dice que f es una función derivable en x0.

En el caso de f (x) = x2 + 2 hemos calculado previamente en 4.5 que ma = 2a por lo tanto

f ′(a) = 2a.

El Dom( f ) y el Dom( f ′) son ambos iguales a R (el límite del cociente incremental existepara cualquier valor de a).

C Hacemos algunos comentarios respecto a la notación que se usa y usaremos con lasderivadas.

Por un lado, en la notacióndfdx

la variable que figura en el denominador hace referenciaa la variable independiente de la función cuyo nombre está en el numerador.

dfdx=

variable dependientevariable independiente

Page 19: 4.Derivadas. - UNLP · 4 Capítulo4.Derivadas. 4.1.2Velocidadinstantánea. Lavelocidadpromediodeterminacómovaríalaposicióndeunobjetoentredosinstantes detiempo.Enlosmovimientosunifomes

4.5 La derivada como un límite. 19

Actividad 4.14 Para un mol de oxígeno a 26◦ C, la presión P y el volumen V se relacionanmediante la ecuación

P =1 × 0.082 × 26

Vdonde P se mide en atmósferas y V en litros.

a) Encuentren la derivada de P respecto a V .b) ¿Cuánto vale P′(1)?

4.5.1 Sobre las unidades de f ′.En general se tiene que si

lı́mx→a

f (x) = L

entonces las unidades de L son las mismas que las de f (x).

Por lo tanto, las unidades de f ′ serán las mismas que tiene el cociente incremental alcociente incremental

∆ f∆x=

unidades de funidades de x

.

Si f (t) es la distancia en metros y t es el tiempo en segundos entonces las unidades def ′(t) (la velocidad) serán metros/segundo.

Si f (x) es la presión en atmósferas (atm) y x es la altitud en km entonces las unidadesde f ′(x) (usualmente llamado gradiente de presión) serán atm/km.

Si f (t) es el tamaño de una población en individuos y t es el tiempo en años entonceslas unidades de f ′(t) (tasa de crecimiento) serán individuos/año.

4.5.2 Definición equivalente para f ′(a).La noción de derivada está asociada al valor del límite de las velocidades promedio

calculadas en el intervalo [a, x]. Usando la notación de ∆ f y ∆x los siguientes cocientesincrementales son equivalentes considerando que ∆x = x − a.

eje x

a x←−

∆x = x − a

eje x

ax−→

∆x = x − a

f (x) − f (a)x − a

=f (a + ∆x) − f (a)

∆x. (4.6)

De modo que la derivada, en el caso de que exista, queda determinada por

dfdx(a) = lı́m

x→a

f (x) − f (a)x − a

= lı́m∆x→0

f (a + ∆x) − f (a)∆x

La equivalencia x → a ⇐⇒ ∆x → 0 esesencial en este desarrollo. Decir que x tiendea a es equivalente a decir que la diferenciax − a tiende a 0.

Donde hemos considerado la equivalencia: x → a⇐⇒ ∆x → 0.

Page 20: 4.Derivadas. - UNLP · 4 Capítulo4.Derivadas. 4.1.2Velocidadinstantánea. Lavelocidadpromediodeterminacómovaríalaposicióndeunobjetoentredosinstantes detiempo.Enlosmovimientosunifomes

20 Capítulo 4. Derivadas.

Actividad 4.15 Usando la expresión

lı́mx→a

f (x) − f (a)x − a

calculen f ′(a) para los valores de a ∈ Dom( f ).

a) f (x) = 4x3 b) f (x) = 7x − 3 c) f (x) = 5 d) f (x) =1x2

Para resolver las Actividades 4.15 y4.16 pueden ser útiles las siguientesigualdades algebraicas

b2 − a2 = (b − a)(b + a)

b3 − a3 = (b − a)(b2 + ab + a2

)b4−a4 = (b−a)

(b3 + b2a + ba2 + a3

)¿Cómo es la expresión equivalentepara (bn − an)?

Actividad 4.16 Usando la expresión

lı́m∆x→0

f (a + ∆x) − f (a)∆x

calculen f ′(a) para los valores de a ∈ Dom( f ).

a) f (x) = 1 − 5x b) f (x) =1x

c) f (x) = πx4 d) f (x) = π2

4.6 La función derivada.El estudio de las funciones que intervienen en los modelos matemáticos se apoya muchas

veces, y en primera instancia, en construcciones gráficas. Ingenuamente, en ocasiones,realizamos construcciones con tablas de valores con 5 o 6 datos (10 datos quizás) conectandolos puntos con una curva suave. Otra veces, mediante softwares graficadores podemos realizarconstrucciones gráficas extremádamente sofisticadas. Sin embargo, estas dos metodologíaspueden ser insatisfactorias en algunas situaciones; por varias razones.

• Primero, ¿cómo sabemos que la unión de algunos puntos en un gráfico nos producirá laforma real de la curva?• En segundo lugar, ¿cómo podemos saber dónde están las características relevantes delgráfico?• Y tercero, ¿cómo podemos estar seguros de que no nos hemos perdido nada?

Actividad 4.17 Las gráficas de la Figura 4.17 fueron construidas en forma computacional.Determinen, para cada caso: los intervalos de crecimiento y de decrecimiento. Además, losvalores de x en los que se alcanzan los máximos y los mínimos relativos.

−1 −.5 .5 1 1.5 2 2.5

−4

−2

2

4

6

−.4 −.2 .2 .4

.25

.3

.35

.4

.45

.5

Figura 4.17: Gráficas realizadas en forma computacional para la Actividad 4.17.

Page 21: 4.Derivadas. - UNLP · 4 Capítulo4.Derivadas. 4.1.2Velocidadinstantánea. Lavelocidadpromediodeterminacómovaríalaposicióndeunobjetoentredosinstantes detiempo.Enlosmovimientosunifomes

4.6 La función derivada. 21

Actividad 4.18 Si graficamos con alguno de los softwares usuales las funciones f (x) = 2x

(no hemos estudiado aún las funciones exponenciales pero los graficadores pueden hacersu gráfica sin dificultad) y g(x) = x10 se obtiene una gráfica similar a la que presentamosen la Figura 4.18.

¿Cuántas soluciones tiene la ecuación 2x = x10? �

x

y

1

2

−1 1

y = 2x

y = x10

Figura 4.18: Gráficas de las funcio-nes f (x) = 2x y g(x) = x10.

Algunos comentarios respecto a las actividades anteriores.

• Las gráficas de la Actividad 4.17 corresponden a la misma función

f (x) = (x − 13 )

5 − 2x3 + 15

pero con distintas escalas gráficas.

• La ecuación 2x = x10 tiene 3 soluciones reales (y varias soluciones más que soncomplejas) pero la tercer solución, que no se detecta en los gráficos usuales, se escapa alas escalas tradicionales:

x ≈ 58.77 con el correspondiente y ≈ 258.77 ≈ 4.9 × 1017.

Lo que nos interesa entonces es poder obtener mejores respuestas a este tipo de activi-dades usando análisis matemático. Específicamente, utilizando la función derivada comoherramienta esencial para encontrar todas las características que nos interesen de una función.

eje x

eje y

a

eje x

eje y

a

eje x

eje y

a

Figura 4.19: Ejes cartesianos para laActividad 4.19.

Actividad 4.19a) Discutan con sus compañeros/as y docentes la validez de las siguientes proposiciones:

• Una recta tangente a la gráfica de una función corta la gráfica sólo en un punto.• Si una recta corta la gráfica de una función en un único punto entonces se tratade la recta tangente.

b) Utilicen los 3 sistemas de ejes coordenados de la Figura 4.19 para realizar las gráficasque se piden a continuación:• La gráfica de una función y una recta tangente en x = a que sólo se cortan unavez.• La gráfica de una función y una recta tangente en x = a que se cortan dos omás veces.• La gráfica de una función y una recta que NO sea tangente en x = a y que secorten una única vez en x = a.

x mx

-2047.5111620

Tabla 4.5: Valores de mx .

Actividad 4.20 Considerando la Figura 4.20,a) Dibujen las rectas tangentes a la gráfica de la función g en los puntos de abscisa

x = −2, 0, 4, 7.5, 11, 16, 20.b) Completen la Tabla 4.5 con las pendientes de las rectas tangentes.c) Dibujen en la gráfica de la Figura 4.21 los puntos correspondientes a la Tabla 4.5.d) Realicen un bosquejo para la gráfica de g′ como una curva suave que conecte los

puntos. Incorporen una escala adecuada a los ejes cartesianos.e) ¿Cuántas veces corta al eje x la gráfica realizada en la Figura 4.21?f ) Según la gráfica realizada en la Figura 4.21, cuál es el valor de g′(2)? ¿Cuál es el

valor de g′(10)?g) Comparen los valores propuestos de g′(2) y g′(10) con las pendientes de las rectas

tangentes a la gráfica de g en la Figura 4.20. Usen la información para ajustar lapropuesta de gráfica de g′(x).

Page 22: 4.Derivadas. - UNLP · 4 Capítulo4.Derivadas. 4.1.2Velocidadinstantánea. Lavelocidadpromediodeterminacómovaríalaposicióndeunobjetoentredosinstantes detiempo.Enlosmovimientosunifomes

22 Capítulo 4. Derivadas.

eje x

eje y

-3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

-6-5-4-3-2-1012345678

Figura 4.20: Gráfica de la función g.

eje x

eje y

-3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

-6-5-4-3-2-1012345678

Figura 4.21: Puntos correspondientes a la Tabla 4.4 y propuesta de gráfica de la función g′.

x f ′(x)

-2-1012

Tabla 4.6: Valores de f ′(x).

Actividad 4.21 En la Figura 4.22a se presenta la gráfica de una función f .a) Determinen, de manera aproximada, los valores f ′(−2), f ′(−1), f ′(0), f ′(1) y f ′(2).

Completen la Tabla 4.6.b) En la Figura 4.22b se presenta un sistema de ejes coordenados para representar los

valores de f ′ en función de x. Representen los valores encontrados en el inciso a).El gráfico no tiene escalas en el eje vertical para que se puedan ubicar los datosencontrados de manera adecuada.

c) En la Figura 4.22b, utilicen los puntos marcados para realizar un bosquejo de lafunción f ′.

Page 23: 4.Derivadas. - UNLP · 4 Capítulo4.Derivadas. 4.1.2Velocidadinstantánea. Lavelocidadpromediodeterminacómovaríalaposicióndeunobjetoentredosinstantes detiempo.Enlosmovimientosunifomes

4.7 Máximos y mínimos locales en una función. 23

−2 −1 0 1 2−10

−5

0

5

10

x (variable independiente)

f(variabledependiente)

(a) Gráfica de la función f .

−2 −1 0 1 2

0

x (variable independiente)

f′(derivada)

(b) Propuesta de gráfica de la función f ′.

Figura 4.22: Gráficas de una función f y propuesta de gráfica de su función derivada f ′.

Actividad 4.22 En el sistema de ejes de la Figura 4.23 bosquejen una porción de la gráficade una función k cerca de x = a basados en la siguiente información sobre su derivada:• k ′(a) = 0• k ′(x) es negativa para los valores de x < a.• k ′(x) es positiva para los valores de x > a.

eje x

eje y

a

Figura 4.23: Ejes cartesianos.Actividad 4.23 En el sistema de ejes de la Figura 4.24 bosquejen una porción de la gráficade una función k cerca de x = a basados en la siguiente información sobre su derivada:• k ′(a) = 0• k ′(x) es negativa en ambos lados de x = a.

eje x

eje y

a

Figura 4.24: Ejes cartesianos.4.7 Máximos y mínimos locales en una función.

Lo primero que nos proponemos es determinar qué características tienen aquellos puntosde la gráfica de una función derivable en la que se alcanzan los valores máximos locales ylos valores mínimos locales.

Figura 4.25: Gráfica de una fun-ción f con intervalos de crecimiento,intervalos de decrecimiento, valoresmáximos locales y valores mínimoslocales.

c dx1

x0

x2

Mínimo local

¿?

Mínimo local

Máximo local

Page 24: 4.Derivadas. - UNLP · 4 Capítulo4.Derivadas. 4.1.2Velocidadinstantánea. Lavelocidadpromediodeterminacómovaríalaposicióndeunobjetoentredosinstantes detiempo.Enlosmovimientosunifomes

24 Capítulo 4. Derivadas.

Teorema 4.7.1 — Condición necesaria para la existencia de un máximo o mínimo local.Dada una función f definida en un intervalo abierto (c, d) que es derivable en x0 ∈ (c, d)

y alcanza allí un máximo o un mínimo local, entonces (necesariamente) debe ser

f ′(x0) = 0.

Dicho de otra manera: La recta tangente en el punto de abscisa x0 debe ser horizontal.

Si comenzáramos nuestro análisis en un x0 perteneciente al intervalo (c, d) en el cual sealcanza un valor mínimo local veremos cómo se comportan los cocientes incrementales.

c dx1

x0

x2

Mínimo local

Máximo local

∆x > 0

∆ f ≥ 0

∆x < 0

∆ f ≥ 0

Recordemos que:∆x = x − x0∆ f = f (x) − f (x0)

Dado que f (x0) es un valor mínimo local podemos afirmar que f (x0) ≤ f (x) para todoslos valores de x cercanos a x0. O sea, f (x) − f (x0) ≥ 0.

En cambio, x − x0 puede ser positivo o negativo según se tome x → x+0 o x → x−0 .

Por lo tanto, los cocientes incrementales quedan

f (x) − f (x0)

x − x0=∆ f∆x=

Si x → x+0 entonces

∆ f ≥ 0∆x > 0

≥ 0 (1)

Si x → x−0 entonces∆ f ≥ 0∆x < 0

≤ 0 (2)

Como sabemos que f es derivable en x0 entonces las afirmaciones (1) y (2) implican cada unalo siguiente

lı́mx→x+0

f (x) − f (x0)

x − x0≥ 0︸︷︷︸

Por (1)

lı́mx→x−0

f (x) − f (x0)

x − x0≤ 0︸︷︷︸

Por (2)

.

Para satisfacer ambas condiciones a la vez será f ′(x0) = 0 necesariamente.

C Un comentario importante respecto al razonamiento anterior. Utilizamos una propiedadde los límites que no mencionamos previamente: si para todos los valores x cercanos ax0 se cumple que G(x) ≤ M y además se sabe que existe el límite de G(x) para x → x0entonces necesariamente

lı́mx→x0

G(x) ≤ M .

Page 25: 4.Derivadas. - UNLP · 4 Capítulo4.Derivadas. 4.1.2Velocidadinstantánea. Lavelocidadpromediodeterminacómovaríalaposicióndeunobjetoentredosinstantes detiempo.Enlosmovimientosunifomes

4.7 Máximos y mínimos locales en una función. 25

Actividad 4.24 ¿Cómo debe modificarse el razonamiento anterior para el caso que x0 sea laabscisa de un punto (x0, f (x0)) donde se alcance un valor máximo local?

El Teorema 4.7.1 nos brinda una condición necesaria que deben cumplir todos aquellospuntos de la gráfica de una función f derivable en un intervalo abierto en el que se alcanceun valor máximo local o un valor mínimo local.

Corresponde ahora analizar las siguientes 3 situaciones: ¿por qué decimos condiciónnecesaria, ¿qué pasa si la función no es derivable? y ¿qué pasa si el intervalo no es unintervalo abierto?

4.7.1 Valores estacionarios.La condición f ′(x0) = 0 es una condición necesaria pero no es suficiente. Es posible que

existan puntos para los cuales se cumpla f ′(x0) = 0 pero que, sin embargo, no se alcancen allívalores máximos locales ni valores mínimos locales.

En la Figura 4.22a y en la Actividad 4.23 aparecen ejemplos en los que la recta tangente enun punto es horizontal pero sin embargo no se trata de un valor máximo ni mínimo local.

Definición 4.7.1 — Valores estacionarios. Los valores de x para los cuales f ′(x) = 0 sedenominan valores estacionarios de f .

Por lo tanto, los valores máximos locales y los valores mínimos locales de funcionesderivables en un intervalo abierto siempre se alcanzan en valores estacionarios. Aunque noen todos los puntos estacionarios se alcanzarán siempre valores máximos locales o valoresmínimos locales.

4.7.2 Valores críticos.La condición f ′(x0) = 0 conlleva la hipótesis de saber que la f ′(x0) existe; o sea, de saber

que la función es derivable en x0. Aquellos valores de x0 para los cuales no exista la derivadano están incluidos entonces en el teorema de condición necesaria para los máximos o mínimoslocales. Como ejemplos presentamos las siguientes opciones.

Figura 4.26: En ninguna de estassituaciones la curva posee recta tan-gente en el punto (3, 2).

En ambos casos, para x = 3 se alcanzan máximos (Gráfica B) o mínimos (Gráfica C)locales de la función; sin embargo, en ninguno de los casos existe f ′(3). De modo que losvalores máximos o mínimos locales de una función también pueden enocntrarse en aquellosvalores de x en los que la función no es derivable.

Definición 4.7.2 — Valores críticos. Aquellos valores de x en el dominio (pero no en elborde) de una función f en los que la derivada no existe, o aquellos en los que la derivadaexiste y vale f ′(x) = 0, se denominan valores críticos de f .

Remarcamos que los valores críticos de una función deben ser siempre valores en sudominio.

Page 26: 4.Derivadas. - UNLP · 4 Capítulo4.Derivadas. 4.1.2Velocidadinstantánea. Lavelocidadpromediodeterminacómovaríalaposicióndeunobjetoentredosinstantes detiempo.Enlosmovimientosunifomes

26 Capítulo 4. Derivadas.

� Ejemplo 4.12 Mostraremos, analíticamente, que f (x) =1xno tiene valores críticos.

Corresponde encontrar los valores del dominio (que no están en el borde) en los que laderivada no existe, y los valores estacionarios.Considerando que el Dom( f ) = R − {0} tenemos que el dominio no tiene bordes.

Según lo que realizaron ustedes en la Actividad 4.16b) se tiene que f ′(x) = −1x2 para

todos los valores de x , 0. O sea que la función es derivable en todo su dominio.Por otro lado, los valores estacionarios de f deben cumplir la ecuación

f ′(x) = 0⇐⇒ −1x2 = 0⇐⇒ −1 = 0

que es absurdo porque −1 es distinto de 0. Por lo tanto la ecuación no tiene solución.No hay valores críticos.

Conjuntos Intervalos:

Conjunto ∅Conjunto vacío. Sin elementos.

Conjunto (a, b){x ∈ R : a < x < b }

Conjunto [a, b]{x ∈ R : a ≤ x ≤ b }

Conjunto (a, b]{x ∈ R : a < x ≤ b }

Conjunto [a, b){x ∈ R : a ≤ x < b }

Conjunto (a,+∞){x ∈ R : a < x }

Conjunto (−∞, b){x ∈ R : x < b }

Conjunto [a,+∞){x ∈ R : a ≤ x }

Conjunto (−∞, b]{x ∈ R : x ≤ b }

Conjunto (−∞,+∞)Todos los números reales. R.

Tabla 4.7: Los intervalos que formanla base de otros conjuntos más com-plejos que usaremos de dominio.

Actividad 4.25 ¿Cuántos y cuáles son los valores críticos de las siguientes funciones?

a) f (x) = πx4 b) f (x) = x3 − x�

Actividad 4.26 Realicen la gráfica de una función que cumpla las siguientes condiciones:tenga 2 máximos relativos, 4 valores estacionarios, 1 mínimo relativo y 5 valores críticos.

4.7.3 Bordes del intervalo.Por último, ¿qué pasa si la función está definida en un conjunto que no es un intervalo

abierto? Los conjuntos que no son intervalos abiertos pueden tener diversas formas: pueden serintervalos cerrados sencillos como el intervalo [1, 5] pero también pueden ser conjuntos máscomplejos como por ejemplo el conjunto de los números racionales Q. Nos concentraremos enlos conjuntos de la forma, que ya conocemos, de la Tabla 4.7, o que se pueden formar uniendouna cantidad finita de ellos. Por ejemplo,• La función f (x) =

√x2 − 1 tiene como dominio natural Dom( f ) = (−∞,−1] ∪ [1,+∞).

• La función g(x) =1

x − 3tiene como dominio natural Dom(g) = (−∞, 3) ∪ (3,+∞).

En general, podrá pasar que los valores de x para los cuales las funciones tomen susvalores máximos locales o valores mínimos locales también se encuentren en los bordesde los conjuntos que estemos estudiando. Por ejemplo, una función creciente en el intervalo[−1, 1] toma sus valores máximos y mínimos en los bordes del intervalo. Ver Figura 4.27.

x

y

−1 1

Mínimo local

Máximo local

Figura 4.27: Gráfica de una funciónen un intervalo cerrado con valoresmáximos y mínimos que se alcanzanen los bordes del dominio.

Primeras conclusiones y reflexiones.La exploración de los valores críticos (que incluye los valores estacionarios de una

función y su comportamiento en los bordes del intervalo) permiten tener una la listacompleta de valores en los la función con la que estemos trabajando tome sus valores máximoso mínimos locales. Ninguno de estos valores máximos/mínimos se nos “escapará” siempre ycuando seamos capaces de:• Averiguar en qué valores de x una función es derivable y en qué puntos no. Requiere

mayor destreza en el cálculo de límites de los cocientes incrementales. Nos ocuparemosde esto en la siguiente sección.• Resolver la ecuación f ′(x) = 0. Requiere destreza algebraica para “despejar” la variable

x. Aunque puede suceder que la ecuación no sea resoluble en forma exacta por métodosalgebraicos y tengamos que recurrir a métodos de aproximación.• Identificar correctamente el dominio de la función junto con sus bordes. Aquí se conjuganvarias cosas. Principalmente conocer las características de las funciones básicas.

Page 27: 4.Derivadas. - UNLP · 4 Capítulo4.Derivadas. 4.1.2Velocidadinstantánea. Lavelocidadpromediodeterminacómovaríalaposicióndeunobjetoentredosinstantes detiempo.Enlosmovimientosunifomes

4.8 Existencia de la derivada. 27

4.8 Existencia de la derivada.Como mencionamos anteriormente, nos interesa saber cuándo existe y cuándo no existe el

límite correspondiente al cálculo de una derivada

lı́mx→a

f (x) − f (a)x − a

(4.7)

Ya hemos mencionado en el Teorema 4.3.1 que la existencia de los łímites laterales y suigualdad es suficiente para poder afirmar que el límite 4.7 existe.

Definición 4.8.1 — Derivadas laterales. Consideramos dos casos por separado.

• Si f es una función definida en un intervalo de la forma [a, d), entonces se denominaderivada lateral por derecha de f en x = a al número, si es que existe,

f ′+(a) = lı́mx→a+

f (x) − f (a)x − a

• Si f es una función definida en un intervalo de la forma (c, a], entonces se denominaderivada lateral por izquierda al número, si es que existe,

f ′−(a) = lı́mx→a−

f (x) − f (a)x − a

Actividad 4.27 Discutan entre compañeros/as y docentes, ¿qué representan geométricamentelas derivadas laterales de una función? Redacten la explicación que consideren adecuada yrealicen un gráfico que sirva como ayuda. �

Actividad 4.28 La Figura 4.28 presenta la gráfica del volumen ventricular del corazóndurante un latido normal de 0.8 segundos. Durante la sístole, el ventrículo se contrae yexpulsa la sangre hacia la aorta. La diástole, es el período en el que el ventrículo se relaja yrecibe sangre que proviene de la vena cava.¿Cómo describirían el comportamiento ventricular a los 0.3 segundos? ¿El ventrículo secontrae a la misma velocidad con la que se relaja? ¿Cuál es la velocidad del flujo de sangre(en ml/segundos) que entra al ventrículo al comenzar la diástole?

Figura 4.28: Volumen ventricular (en ml) en función del tiempo (en segundos).

Page 28: 4.Derivadas. - UNLP · 4 Capítulo4.Derivadas. 4.1.2Velocidadinstantánea. Lavelocidadpromediodeterminacómovaríalaposicióndeunobjetoentredosinstantes detiempo.Enlosmovimientosunifomes

28 Capítulo 4. Derivadas.

Teorema 4.8.1 Considerando f una función definida en un intervalo abierto (c, d) quecontiene a x = a.

f es derivable en x = a ⇐⇒ f ′−(a) y f ′+(a) existen y son iguales.

En este caso se cumple: f ′(a) = f ′−(a) = f ′+(a).

Notar: si las derivadas laterales en un punto x = a de una función no existen, o existenpero son distintas, entonces la función no es derivable en x = a. Ver Figura 4.29.

Figura 4.29: Porción de la gráficade una función cuyas derivadas la-terales existen en x = 3 pero sondistintas.

Actividad 4.29 Estudien las derivadas laterales de las siguientes funciones en el valor dex = a indicado y decidan si la función es derivable allí. En cada caso, realicen la gráfica dela función.

a) f (x) =

x2 para x ≥ 0

x3 para x < 0para a = 0.

b) g(r) =

3r + 1 para r ≤ 1

r + 3 para r > 1para a = 1.

Figura 4.30: Porción de la gráfica deuna función en la que no existe ellímite de f (x) para x → 3.

Teorema 4.8.2 Considerando f una función definida en un intervalo abierto (c, d) quecontiene a x = a.

Si f es derivable en x = a =⇒ lı́mx→a

f (x) = f (a).

La existencia de la derivada en el valor x = a garantiza que el límite lı́mx→a

f (x) tambiénexiste y puede calcularse por simple evaluación.

Notar: si el lı́mx→a

f (x) no existe o, existe pero es distinto a f (a), entonces la función no esderivable en x = a. Ver Figura 4.30.

Las funciones que cumple quelı́mx→a

f (x) = f (a) (o sea, aquellaspara las cuales el límite se puede cal-cular simplemente por evaluación)se denominan continuas en x = a.En el próximo módulo las estudiare-mos con más detalles.

Trabajaremos a continuación una última situación en este módulo en relación a nuestro

problema de determinar la existencia del límite lı́mx→a

f (x) − f (a)x − a

.

x y Vprom[0, x]

1.51.5.1.01

−.01−.1−.5−1−1.5

Tabla 4.8: Actividad 4.30.

Actividad 4.30 La Figura 4.32 presenta la gráfica de la función f (x) = 3√x (recordar lasfunciones radicales del Módulo 3 en página 9).

Nos proponemos estudiar la existencia de la recta tangente a la gráfica en el punto (0, 0).a) Completen la segunda columna de la Tabla 4.8 con los valores de y correspondientes

a los puntos de abscisa x. Grafiquen en la figura las rectas secantes entre los puntos(0, 0) y (x, y).

b) Completen la Tabla 4.8 con los valores correspondientes de las pendientes de lasrectas secantes graficadas en el item a).

c) Se observa que para valores de x que se aproximan a 0 las rectas secantes se“aproximan” a una recta de ecuación . . . ¿qué ecuación tiene la recta tangente a lagráfica en el punto (0, 0)?

d) ¿Qué ocurre con los valores de Vprom[0, x] si agregamos más filas a la tabla tomandovalores de x cada vez más cercanos a 0?

Page 29: 4.Derivadas. - UNLP · 4 Capítulo4.Derivadas. 4.1.2Velocidadinstantánea. Lavelocidadpromediodeterminacómovaríalaposicióndeunobjetoentredosinstantes detiempo.Enlosmovimientosunifomes

4.8 Existencia de la derivada. 29

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2−1.5

−1

−0.5

0

0.5

1

1.5

y = 3√x

x

y

Figura 4.31: Gráfica de la función radical f (x) = 3√x.

Para determinar si la función f (x) = 3√x es derivable en x = 0 debemos estudiar laexistencia del límite

lı́mx→0

f (x) − f (0)x − 0

= lı́mx→0

3√xx= lı́m

x→0

1x2/3︸ ︷︷ ︸(∗)

El límite (∗) no puede calcularse evaluando porque el denominador se anula (no sonválidas las propiedades de cálculo de límites). La exploración numérica de la Actividad 4.30b)y la exploración geométrica de la Actividad 4.30c) muestran que tomando x → 0 (tanto parax → 0+ como x → 0−) los valores de Vprom[0, x] son cada vez más grandes y positivos a lavez que la rectas secantes se “ponen” cada vez más verticales. Escribimos

cuando x se aproxima a 0 entoncesf (x) − f (0)

x − 0aumentan ilimitadamente

Los númerosf (x) − f (0)

x − 0se comportan de tal manera que aumentan y crecen indefini-

damente tomando valores tan grandes como se quiera; no tienen ningún techo.

−2 −1 0 1 2

−1

0

1

Figura 4.32: Gráfica de la funciónradical f (x) = 3√x.

Por lo tanto, el límite

lı́mx→0

f (x) − f (0)x − 0

= lı́mx→0

3√xx= lı́m

x→0

1x2/3 = +∞

no existe (no es ningún número real finito) y la función f (x) = 3√x no es derivable enx = 0. Es necesario marcar aquí la diferencia con los casos anteriores porque la gráfica tienerecta tangente en el punto (0, 0) pero es vertical por lo que no tiene pendiente o como a vecesse dice, tienen pendiente infinita.