3.SOPLADO MOLDE

18
1 CENTRO NACIONAL ASTIN REGIONAL VALLE PROCESO DE TRANSFORMACIÓN DE PLASTICOS POR SOPLADO LUIS HENRY MORENO CH. INSTRUCTOR, CDT ASTIN GONZALO GOMÉZ PINZÓN INSTRUCTOR, CDT ASTIN SANTIAGO DE CALI

description

sena moldes de soplado

Transcript of 3.SOPLADO MOLDE

Page 1: 3.SOPLADO MOLDE

HFJCE

1

CENTRO NACIONAL ASTIN REGIONAL VALLE

PROCESO DE TRANSFORMACIÓN DE

PLASTICOS POR SOPLADO

LUIS HENRY MORENO CH.

INSTRUCTOR, CDT ASTIN

GONZALO GOMÉZ PINZÓN

INSTRUCTOR, CDT ASTIN

SANTIAGO DE CALI

Page 2: 3.SOPLADO MOLDE

HFJCE

2

CENTRO NACIONAL ASTIN REGIONAL VALLE

MOLDE

Es una herramienta sobre la cual se hace el conformado del artículo plástico. En el molde se transforma la manga extruída, permitiendo la forma definitiva del envase. La función del molde es: - Recibir la manga - Cerrar el molde - Permitir el soplado (pre-enfriamiento) - Enfriar la pieza - Abrir molde (expulsión) - Repetir ciclo En el proceso de extrusión soplado, los semimoldes (mitad del molde), se abren para recibir la manga o preforma, luego el molde se cierra y atrapa la manga aplastándola en la zona del cuello y fondo ocasionando costura o soldadura sobre todo el perímetro que muerde la manga; el molde se desplaza a la zona de soplado, un perno soplador se introduce por el cuello y sopla la manga, obligándola a que ésta se estire (infle) hacia las paredes de la cavidad del molde,

Durante este soplado el envase se enfría por el aire y la refrigeración del molde disipa el calor a través de la superficie de la cavidad del molde hasta una temperatura de desmoldeo. En el diseño del molde es importante las características de calidad como: Medidas externas de la pieza Volumen de pieza Carga mecánica del artículo Calidad de la superficie del artículo

Las partes principales que componen un molde son: - Cuerpo - Cuello - Fondo - Placas de golpe - Columnas - Bujes - Placa posterior - Ranuras de ventilación - Refrigeración - Perforaciones para la refrigeración

Page 3: 3.SOPLADO MOLDE

HFJCE

3

CENTRO NACIONAL ASTIN REGIONAL VALLE

En general los moldes de soplado se fabrican por insertos o partes, con la finalidad de facilitar la construcción individual del molde, abaratar los costos de fabricación y poder sustituir con facilidad piezas que se desgasten.

FIGURA 46. SEMIMOLDE CON PIEZA SOPLADA

Page 4: 3.SOPLADO MOLDE

HFJCE

4

CENTRO NACIONAL ASTIN REGIONAL VALLE

FIGURA 47. SEMIMOLDE DE ENVASE CILINDRICO.

Placa distanciadora

Placa posterior

Sección del cuello

Mordaza de calibración

Área de aplastamiento

Cuerpo del molde

Ranura de ventilación

Elementos de guía (columna y buje) Parte del fondo

Área de aplastamiento

Placa de distanciamiento

Page 5: 3.SOPLADO MOLDE

HFJCE

5

CENTRO NACIONAL ASTIN REGIONAL VALLE

ZONAS DE APLASTAMIENTO

Los cantos para el corte se hacen en el proceso de extrusión soplado con la finalidad de cerrar la manga que se va a soplar. Cuando se hace el prensado en los cantos se debe tener en cuenta la calidad del corte, la resistencia al impacto, la presión, estabilidad al calor frente a posteriores fisuraciones debido a la tensión provocada por el aplastamiento del material en los cantos de corte.

Los cantos de corte deben garantizar una buena soldadura de la manga y fácil corte del material sobrante.

La zona de corte en materiales de alta viscosidad tiene gran importancia en el cierre del molde y se debe morder y comprimir la rebada con la finalidad de separar fácilmente ésta. El ancho de los cantos es de acuerdo al material a soplar, el tamaño y grueso de la pared de la pieza que está oscilando entre 0. 1 a 2 mm.

FIGURA 48. ZONAS DE APLASTAMIENTO DE LA MANGA.

Page 6: 3.SOPLADO MOLDE

HFJCE

6

CENTRO NACIONAL ASTIN REGIONAL VALLE

ZONA DEL FONDO

FIGURA 49. SOLDADURA DE LOS FONDOS.

Page 7: 3.SOPLADO MOLDE

HFJCE

7

CENTRO NACIONAL ASTIN REGIONAL VALLE

FORMAS PARA EL CORTE DEL FONDO DE LA BOTELLA (Pinch –off)

FIGURA 50. DISEÑO DE FONDOS

Page 8: 3.SOPLADO MOLDE

HFJCE

8

CENTRO NACIONAL ASTIN REGIONAL VALLE

DESGASIFICACIÓN

La desgasificación de la cavidad del molde tiene gran importancia en la calidad de la pieza soplada, también en el tiempo de enfriamiento porque no existe contacto entre la pared de la pieza y la superficie fría de la cavidad, los separa un fino colchón de aire, esto hace que el tiempo de enfriamiento sea mayor. Cuando el molde se cierra queda atrapada gran cantidad de aire entre la manga y la superficie de la cavidad lo que ocasiona superficies porosas en la pieza.

FIGURA 51. AIRE ATRAPADO ENTRE MANGA Y CAVIDAD.

Page 9: 3.SOPLADO MOLDE

HFJCE

9

CENTRO NACIONAL ASTIN REGIONAL VALLE

Existen diferentes posibilidades para mejorar la desgasificación del molde, se debe tener en cuenta: Superficie de la cavidad Superficie de separación (insertos) Cavidad del molde Superficie de la cavidad Sobre la superficie se deben hacer acabados especiales, en lo posible eliminar el brillo. En la mayoría de los casos se utilizan moldes con superficie áspera, hecha por chorro de arena o tratamiento con ácidos. El aire puede escapar a través de la superficie porosa. Superficie de separación La superficie de separación es muy importante para evacuar el aire atrapado; se pueden realizar pequeñas ranuras que comuniquen la cavidad y la parte exterior del molde. Este aire atrapado puede generar en la pieza una solidificación no uniforme, e igualmente una contracción no uniforme en ésta zona, lo que implicaría en diferencias de espesores de pared en la pieza soplada. Cavidad del molde No siempre se puede desgasificar el molde por la superficie de separación, esto puede deberse a que el molde es construido sin separación o no se tiene esa posibilidad; en estos casos se debe hacer la desgasificación en la cavidad y se puede hacer de varias maneras: de acuerdo a la necesidad técnica del artículo. A- Pines cilíndricos embebidos en la cavidad con pequeños orificios con la finalidad de evacuar el aire por estos orificios, se utilizan para moldes grandes. B- Canales sobre la superficie de separación en el semimolde, estas se hacen desde la cavidad hasta el lado exterior del molde, las medidas pueden variar de acuerdo a la capacidad o tamaño de la pieza. En general se recomiendan las siguientes medidas que sirven como orientación, para la desgasificación sin que aparezcan huellas sobre las piezas.

Page 10: 3.SOPLADO MOLDE

HFJCE

10

CENTRO NACIONAL ASTIN REGIONAL VALLE

TABLA # 4

C. Agujeros, el aire remanente se acumula con preferencia en las gargantas, rebajas, Estos puntos se pueden desgasificar con pequeños taladros aproximadamente 0.2 a 0.4 mm. y luego hacer desahogos con mayores diámetros. D. Insertar, el aire sale por los insertos; se consideran las medidas recomendadas en la tabla.

También se utilizan inserciones de materiales sinterizados (bronces). Otros sitios de desgasificación

Se hace desgasificación también en los hilos de las roscas. Pequeños agujeros con

salida entre la placa de golpe y el cuello, estos agujeros se taladran o erosionan

con diámetros entre 0.2 y 0.3 mm.

Page 11: 3.SOPLADO MOLDE

HFJCE

11

CENTRO NACIONAL ASTIN REGIONAL VALLE

FIGURA 52. SISTEMA DE DESGASIFICACIÓN

1. Semimolde con diferentes sistemas: A Pin, B Ranuras C Agujero, D Injerto

2. Boquillas ranuradas

3. Sinterizados de bronce

4. Agujeros en la rosca

Page 12: 3.SOPLADO MOLDE

HFJCE

12

CENTRO NACIONAL ASTIN REGIONAL VALLE

REFRIGERACIÓN La función del sistema de refrigeración, es en general enfriar la pieza soplada, lo más rápido y uniforme posible, garantizando el desmoldeo y las tolerancias de la pieza.

FIGURA 53. ENFRIAMIENTO PARA ENVASE CILÍNDRICO

El diseño del sistema de refrigeración o atemperado de un molde, depende de varios factores como: - Tipo de material a soplar - Espesor de pared de las piezas - Tipo de material del molde (cuello, fondo, cuerpo) - Clase de geometría de la pieza - Tamaño del molde - Tipo de fabricación (mecanizado, fundido)

Page 13: 3.SOPLADO MOLDE

HFJCE

13

CENTRO NACIONAL ASTIN REGIONAL VALLE

Dependiendo del tamaño del molde es conveniente diseñar los circuitos de refrigeración separados, es decir un sistema de refrigeración múltiple en cada semimolde, esto debido a la acumulación de materiales plásticos en la zona del cuello y fondo, este calor se debe extraer conservando una diferencia de temperatura entre la entrada y la salida de cada circuito, aproximadamente 3°C se busca con esto: - Mejorar distribución de la temperatura. - Tiempo de refrigeración más corto. - Contracciones homogéneas Para la transformación del policarbonato se necesitan temperaturas en el molde entre 80 – 100°C Para la transformación de Poliolefinas se necesitan temperaturas en el molde entre 8 y 15°C

FIGURA 54. ESQUEMA DE SISTEMAS DE REFRIGERACIÓN ÚNICOS Y

MÚLTIPLES

Page 14: 3.SOPLADO MOLDE

HFJCE

14

CENTRO NACIONAL ASTIN REGIONAL VALLE

FIGURA 55. MOLDE DE UNA CAVIDAD, SISTEMA DE REFRIGERACION.

Una buena selección de los materiales para la construcción del molde es muy importante porque de ello dependen algunos factores como: - Número de piezas a producir - Costos de fabricación o mecanizado - Vida útil del molde - Tipo de material a moldear Principalmente para la transformación de plásticos por soplado los factores de conductividad térmica y resistencia al desgaste son tenidos en cuenta, ya que de ellos depende el ciclo de soplado y la vida del molde.

Page 15: 3.SOPLADO MOLDE

HFJCE

15

CENTRO NACIONAL ASTIN REGIONAL VALLE

Entre los materiales más utilizados para la fabricación de moldes para Soplado podemos nombrar: Acero: Para los bordes de corte en zonas como fondos y cuellos que están sometidos a desgaste y aplastamiento; para piezas pequeñas con producciones altas. Acero inoxidable: Preferentemente para la transformación de materiales corrosivos como PVC y también garantizan un buen pulido. Metales no ferrosos: Aleaciones de aluminio se destacan por una alta conductividad térmica, pero tienen la desventaja de menor dureza, contra tiempos de ciclos cortos. Cobre-Berilio: Tienen gran aplicación por la excelente conductividad térmica y buena resistencia al desgaste. Los moldes se pueden fabricar por mecanizado o fundición. Los moldes fabricados por fundición son los más económicos y se utilizan generalmente para el cuerpo de la pieza.

CONTRACCIONES

La contracción es usada para conocer las medidas finales de la pieza, de acuerdo al tipo de material a transformar y otros parámetros que dependen de ellos (temperatura, velocidad, enfriamiento, etc.).

La contracción es la diferencia de medidas

Entre la cavidad del molde y las medidas finales

De la pieza a temperatura ambiente.

Page 16: 3.SOPLADO MOLDE

HFJCE

16

CENTRO NACIONAL ASTIN REGIONAL VALLE

En general las medidas finales de la pieza se toman 48 horas después de soplada. La orientación de las macromoléculas en la dirección de la deformación, conduce a una contracción sin las mismas características en todo el cuerpo, es decir, las contracciones tienen diferente comportamiento donde la relación de soplado es mayor.

TABLA Nº 5.

Page 17: 3.SOPLADO MOLDE

HFJCE

17

CENTRO NACIONAL ASTIN REGIONAL VALLE

PROPIEDADES DE MATERIALES PARA LA FABRICACIÓN DE MOLDES EN SOPLADO

Material Conductividad

térmica

Densidad Acabado

superficial

Costo

material

Costo

fabricación

Material a

transformar

Aplicación

Duraluminio Excelente Baja Excelente Elevado Bajo PVC

Poliolefinas

Cuerpo

Acero

inoxidable

Baja Alta Excelente Elevado Elevado PVC

Poliolefinas

Total

Acero al

carbono

Baja Alta Regular Bajo Elevado Poliolefinas Total

Cobre berilio Excelente Alta Bueno Elevado Elevado PVC

Poliolefinas

Total

Aleaciones

zinc

Mala Alta Bueno Bajo Bajo PVC

poli olefinas

Cuerpo

Tabla Nº 6.

Page 18: 3.SOPLADO MOLDE

HFJCE

18

CENTRO NACIONAL ASTIN REGIONAL VALLE

MATERIALES PARA LA CONSTRUCCIÓN DE MOLDES DE SOPLADO

Material

Componentes de aleación Densidad a 20°c g/cm3

Conductibilidad Del calor W/Km.

Resistencia a la tracción N/mm2

Elaboración Aplicación

Acero C Si Mn Cr St 37 0.15 0.25 0.40 -- 7.8 46 Mecanizad

o Placa de

recubrimiento CK 45 0.45 0.25 0.65 -- 7.8 26-46 600-900 Mecanizad

o Matriz

L45 Cr 6 1.45 0.20 0.60 1.5 7.8 26-46 600-900 Mecanizado

Postizos del cuello y base

XB Cr 17 0.10 1.0 1.0 16.5 7.7. 26 450-600 Mecanizado

Postizos del cuello y base

Aleación - NE Zinc CU AL 6-znA14Cu3 3 4 7.0 113 300 Fundida

por coladaMatriz

Aluminio Si Mg Mn Cu 6-AlSi5Cu 5 0.5 0.5 1 150 160-270 Fundida

por coladaMatriz

Cobre-Berilio Be CO 2.7 Postizos del cuello y base

2,5 0,5 8.1 88 1150-1500 Prensada por colada

Postizos del cuello y base

0,5 2,5 8.1 185 800 Prensada por colada

TABLA Nº 7