38271548 TALLER 23 Segunda Ley de Newton

15
TALLER 23 A. En una experiencia de laboratorio se haló un carro dinámico, con una fuerza F ejercida por un banda de caucho estirada cierta longitud. Luego se duplicó la fuerza, después se triplicó y finalmente se cuadruplicó (F, 2F, 3F, 4F respectivamente). Se calculó la velocidad del carro cada segundo y sus valores se consideraron en la tabla Nº 1. Tabla Nº 1 F t(s) F 2F 3F 4F 1 1,2 2,4 3,6 4,8 2 2,4 4,8 7,2 9,6 3 3,6 7,2 10,8 14,4 4 4,8 9,6 14,4 19,2 5 6 12 18 24 6 7,2 14,4 21,6 28,8 7 8,4 16,8 25,2 33,6 1. Realiza un gráfico de v contra t, cuando sobre el carro actúa una fuerza constante F. Gráfico de v contra t cuando actúa una fuerza F 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 Tiempo (s) Velocidad (cm/s) 2. Encuentra la aceleración del carro, calculando la pendiente de la curva. 2 , 1 1 2 , 1 1 2 2 , 1 4 , 2 t t V V x x y y m 1 2 1 2 1 2 1 2 = = - - = - - = - - = a = 1,2 cm/s 2 3. Realiza la gráfica de v contra t, para las fuerzas 2F, 3F y 4F.

Transcript of 38271548 TALLER 23 Segunda Ley de Newton

Page 1: 38271548 TALLER 23 Segunda Ley de Newton

TALLER 23

A. En una experiencia de laboratorio se haló un carro dinámico, con una fuerza F ejercida por un banda de caucho estirada cierta longitud. Luego se duplicó la fuerza, después se triplicó y finalmente se cuadruplicó (F, 2F, 3F, 4F respectivamente). Se calculó la velocidad del carro cada segundo y sus valores se consideraron en la tabla Nº 1.

Tabla Nº 1 F t(s)

F 2F 3F 4F

1 1,2 2,4 3,6 4,82 2,4 4,8 7,2 9,63 3,6 7,2 10,8 14,44 4,8 9,6 14,4 19,25 6 12 18 246 7,2 14,4 21,6 28,87 8,4 16,8 25,2 33,6

1. Realiza un gráfico de v contra t, cuando sobre el carro actúa una fuerza constante F.

Gráfico de v contra t cuando actúa una fuerza F

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8

Tiempo (s)

Vel

oci

dad

(cm

/s)

2. Encuentra la aceleración del carro, calculando la pendiente de la curva.

2,112,1

122,14,2

tt

VV

xx

yym

12

12

12

12 ==−−=

−−=

−−=

a = 1,2 cm/s2

3. Realiza la gráfica de v contra t, para las fuerzas 2F, 3F y 4F.

Page 2: 38271548 TALLER 23 Segunda Ley de Newton

Gráfico de V contra t cuando actúa una fuerza 2F

0

2

4

6

8

10

12

14

16

18

0 1 2 3 4 5 6 7 8

Tiempo (s)

Vel

oci

dad

(cm

/s)

Gráfico de V contra t cuando actúa una fuerza 3F

0

5

10

15

20

25

30

0 1 2 3 4 5 6 7 8

Tiempo (s)

Vel

oci

dad

(cm

/s)

Gráfico de V contra t cuando actúa un fuerza 4F

0

5

10

15

20

25

30

35

40

0 1 2 3 4 5 6 7 8

Tiempo (s)

Vel

oci

dad

(cm

/s)

4. Calcula en cada caso la aceleración.

4,21

4,2

12

4,28,4

tt

VV

xx

yym

12

12

12

12 ==−−=

−−=

−−=

2

Page 3: 38271548 TALLER 23 Segunda Ley de Newton

a = 2,4 cm/s2

6,31

6,3

12

6,32,7

tt

VV

xx

yym

12

12

12

12 ==−−=

−−=

−−=

a = 3,6 cm/s2

8,41

8,4

12

8,46,9

tt

VV

xx

yym

12

12

12

12 ==−−=

−−=

−−=

a = 4,8 cm/s2

5. Con los valores de la aceleración encontradas en los numerales 2 y 4, realiza un gráfico de aceleración contra fuerza.

F (d) F 2F 3F 4Fa (cm/s2) 1,2 2,4 3,6 4,8

Gráfico de aceleración contra fuerza

0

1

2

3

4

5

6

0 0,5 1 1,5 2 2,5 3 3,5 4 4,5

Fuerza (d)

Ace

lera

ció

n (

cm/s

2)

6. Escribe la relación matemática que liga a la aceleración en función de la fuerza.

Como la gráfica a vs F es una línea recta que pasa por el origen, entonces estas dos variables son directamente proporcionales; es decir:

Fa∝ ; luego:

KFa = (constante)

KFa =∴

Tomemos un valor de a y F para hallar la constante:

3

Page 4: 38271548 TALLER 23 Segunda Ley de Newton

2,11

2,1 ==K

Entonces: a = 1,2F = F5

6

7. Expresa esta relación verbalmente.

La aceleración que experimenta el carro dinámico es igual a los seis quintos de la fuerza aplicada.

La experiencia con el carro dinámico continuó de la siguiente forma: se mantuvo la fuerza constante 2F y luego se fue incrementando la masa del carro hasta los valores 2m, 3m y 4m. Se calculó la velocidad del móvil cada segundo y se consideraron los datos en la tabla Nº 2.

Tabla Nº 2 m t(s)

m 2m 3m 4m

1 2,4 1,2 0,8 0,62 4,8 2,4 1,6 1,23 7,2 3,6 2,4 1,84 9,6 4,8 3,2 2,45 12 6 4 36 14,4 7,2 4,8 3,67 16,8 8,4 5,6 4,2

8. Realiza un gráfico de v contra t para la masa m.

Gráfico de Velocidad contra tiempo para la masa m

0

2

4

6

8

10

12

14

16

18

0 1 2 3 4 5 6 7 8

Tiempo (s)

Vel

oci

dad

(cm

/s)

9. Calcula la pendiente y compara este valor con la primera aceleración encontrada en el numeral 4.

4,21

4,2

12

4,28,4

12

12

12

1 ==−−=

−−=

−−=

tt

VV

xx

y2ym

4

Page 5: 38271548 TALLER 23 Segunda Ley de Newton

m = 2,4

Esta pendiente y la primera aceleración hallada en el numeral 4 son iguales.

10. Realiza los gráficos de v contra t para las masas 2m, 3m y 4m.

Gráfico de Velocidad contra tiempo para la masa 2m

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8

Tiempo (s)

Vel

oc

ida

d (

cm/s

)

Gráfico de Velocidad contra tiempo para la masa 3m

0

1

2

3

4

5

6

0 1 2 3 4 5 6 7 8

Tiempo (s)

Vel

oci

dad

(cm

/s)

5

Page 6: 38271548 TALLER 23 Segunda Ley de Newton

Gráfico de Velocidad contra tiempo para la masa 4m

0

0,5

1

1,5

2

2,5

3

3,5

4

4,5

0 1 2 3 4 5 6 7 8

Tiempo (s)

Vel

oci

dad

(cm

/s)

11. Encuentra las aceleraciones para cada caso.

2,112

2,14,2 =−−=

∆∆=t

Va

a = 1,2 cm/s2

8,012

8,06,1 =−−=

∆∆=t

Va

a = 0,8 cm/s2

6,012

6,02,1 =−−=

∆∆=t

Va

a = 0,6 cm/s2

12. Con los valores de las aceleraciones encontradas en los numerales 9 y 11, realiza un gráfico de a contra m.

a (cm/s2) 2,4 1,2 0,8 0,6m (g) m 2m 3m 4m

6

Page 7: 38271548 TALLER 23 Segunda Ley de Newton

Gráfico de aceleración contra tiempo

0

0,5

1

1,5

2

2,5

3

0 0,5 1 1,5 2 2,5 3 3,5 4 4,5

masa (g)

acel

erac

ión

(cm

/s2)

13.¿Qué tipo de curva obtuviste? ¿Qué puedes inferir sobre la relación entre la aceleración y la masa?

Se obtuvo una hipérbola. Entre la aceleración y la masa existe una relación inversamente proporcional.

14.Escribe la relación matemática que liga a la aceleración con la masa.

ma

1∝

)tan(. teconsKma =∴

Entonces: m

Ka =

Tomemos dos valores de a y m para hallar la constante:

K = (0,6)(4) = 2,4Entonces:

mma

5

124,2 ==

15.Expresa esta última relación verbalmente.

La aceleración que experimenta el carro dinámica es igual a doce sobre cinco veces su masa.

16.Formula la segunda ley de Newton a partir de los enunciados en los numerales 7 y 15.

La aceleración que experimenta un cuerpo cuando sobre él actúa una fuerza es directamente proporcional a la fuerza e inversamente proporcional a la masa.

7

Page 8: 38271548 TALLER 23 Segunda Ley de Newton

B. Contesta las siguientes preguntas:

1. En algunos casos se define la masa como la cantidad de sustancia que posee un cuerpo. ¿Qué críticas harías a esta forma de definir la masa?

Masa es la propiedad intrínseca de un cuerpo, que mide su inercia, es decir, la resistencia del cuerpo a cambiar su movimiento.

2. ¿Qué variación experimenta la aceleración de un cuerpo, cuando la fuerza neta que actúa sobre él:

a. se duplica.b. Se reduce a la mitad?

Como la aceleración es directamente proporcional a la fuerza, entonces cuando una de estas variables varía, la otra también lo hace en la misma proporción; es decir:

(a) Si la fuerza se duplica, la aceleración también se duplica.(b) Si la fuerza se reduce a la mitad, la aceleración también se reduce a la mitad.

3. ¿Qué diferencia hay entre las aceleraciones de dos cuerpos de masas m1 y m2, cuando sobre ellos actúa la misma fuerza?

a. Si m2 = 2m1;

b. Si 21

2

mm =

a.a1 a2 = ?F1 F2 = F1

m1 m2 = 2m1

F1 = m1a1 (1)F2 = m2a2

F1 = 2m1a2 (2)

Dividiendo la expresión (2) entre la (1):

11

21

1

1

am

am2

F

F

//=

//

1

221a

a=

a1 = 2a2

21

2

aa = ; es decir, la aceleración de m2 es la mitad de la de m1.

8

Page 9: 38271548 TALLER 23 Segunda Ley de Newton

b.a1 a2 = ?F1 F2 = F1

m1= 2m2 m2

F1 = m1a1

F1 = 2m2a1 (1)F2 = m2a2

F1 = m2a2 (2)

Dividiendo la expresión (1) entre la (2):

12

22

1

1

am2

am

F

F

//=

//

1

2

21

a

a=

2a1 = a2 ; es decir, la aceleración de m2 es el doble de la de m1.

4. ¿En qué porcentaje varía la aceleración de un cuerpo cuando su masa se incrementa en un 50% y la fuerza permanece constante?a1 a2 = ?F1 F2 = F1

M1 11

12 2

3

2m

mmm =+=

F1 = m1a1 (1)F2 = m2a2

211 2

3amF = (2)

Dividiendo la expresión (2) entre la (1):

11

21

1

1

am

am2

3

F

F

/

/=

//

1

22

3

1a

a=

21 2

3aa =

112 %67,663

2aaa == ; es decir, la aceleración se incrementa en un 66,67%.

9

Page 10: 38271548 TALLER 23 Segunda Ley de Newton

5. En qué porcentaje varía la aceleración de un cuerpo, cuando su masa se reduce en un 50% y la fuerza no varía?

a1 a2 = ?F1 F2 = F1

M1 11

12 2

1

2m

mmm =−=

F1 = m1a1 (1)F2 = m2a2

211 2

1amF = (2)

Dividiendo la expresión (2) entre la (1):

11

21

1

1

am

am2

1

F

F

/

/=

//

1

22

1

1a

a=

21 2

1aa =

112 %2002 == aa ; es decir, la aceleración se incrementa en un 200% (se duplica).

6. La segunda ley de Newton plantea que la aceleración de un cuerpo está dirigida a lo largo de la línea de acción de la fuerza resultante. ¿Significa esto que el cuerpo debe moverse necesariamente a lo largo de la línea de acción de la fuerza resultante?

Un cuerpo no se mueve necesariamente a la largo de la línea de acción de la fuerza resultante.

7. Observamos en el numeral anterior que el cuerpo no se mueve necesariamente a la largo de la línea de acción de la fuerza resultante, por lo tanto para describir la trayectoria de un cuerpo, se deben tener en cuenta dos características:a. La fuerza resultante que actúa sobre el cuerpo.b. Las condiciones iniciales del movimiento.

A partir de estas características, explica el por qué de la trayectoria de un cuerpo que se lanza verticalmente hacia arriba; del movimiento semiparabólico; del movimiento parabólico; del movimiento circular uniforme; del movimiento de un péndulo.

Movimiento vertical hacia arriba: La trayectoria es una línea recta vertical y el cuerpo es sometido a la fuerza gravitacional.

10

Page 11: 38271548 TALLER 23 Segunda Ley de Newton

Movimiento semiparabólico: La trayectoria es una semiparábola, porque el cuerpo es lanzado horizontalmente desde cierta altura cerca de la superficie terrestre y está sometido a dos movimientos: uno horizontal uniforme y otro vertical acelerado.

Movimiento parabólico: La trayectoria es una parábola, porque el cuerpo es lanzado cerca de la superficie de la Tierra con un ángulo de inclinación respecto al suelo y está sometido a dos movimientos: uno horizontal uniforme y otro vertical acelerado.

Movimiento Circular uniforme: La trayectoria es una circunferencia.

Movimiento de un péndulo: El movimiento es oscilatorio, de un lado a otro, porque está influenciado por la gravedad. 8. Da tres ejemplos de movimientos, en los cuales las direcciones de los vectores velocidad, aceleración y fuerza, lleven la misma dirección.

Movimiento de caída libreMovimiento UniformeMovimiento uniformemente acelerado

9. Da tres ejemplos de movimientos en los cuales la dirección de la velocidad no coincida con la de la aceleración y la fuerza resultante.

Movimiento Circular UniformeMovimiento de proyectilesMovimiento semiparabólico

10. Sobre un cuerpo de masa m actúa una fuerza F, produciendo en él una aceleración. ¿Cuál será la aceleración si:

a. La fuerza se triplica y la masa permanece constante.b. La fuerza permanece constante y la masa se triplica.c. La fuerza y la masa se duplican.d. La fuerza se duplica y la masa se reduce a la mitad.e. La fuerza y la masa se reducen a la mitad.

Solución:

a. Como la aceleración es directamente proporcional a la fuerza, entonces la aceleración también se triplica.

b.a1 a2 = ?F1 F2 = F1

m1 m2 = 3m1

F1 = m1a1 (1)F2 = m2a2

F1 = 3m1a2 (2)

11

Page 12: 38271548 TALLER 23 Segunda Ley de Newton

Dividiendo la expresión (2) entre la (1):

11

21

1

1

am

am3

F

F

//=

//

1

231a

a=

a1 = 3a2

31

2

aa = ; es decir, la aceleración se reduce a la tercera parte.

c.

a1 a2 = ?F1 F2 = 2F1

m1 m2 = 2m1

F1 = m1a1 (1)F2 = m2a2

2F1 = 2m1a2 (2)

Dividiendo la expresión (2) entre la (1):

11

21

1

1

am

am2

F

F2

//=

//

1

222a

a=

2a1 = 2a2

a2 = a1; es decir, la aceleración permanece constante.

d.a1 a2 = ?F1 F2 = 2F1

m1 m2 = m1/2

F1 = m1a1 (1)F2 = m2a2

21

1 22 a

mF =

4F1 = m1a2 (2)

Dividiendo la expresión (2) entre la (1):

12

Page 13: 38271548 TALLER 23 Segunda Ley de Newton

11

21

1

1

am

am

F

F4

//=

//

1

24a

a=

4a1 = a2 ; es decir, la aceleración se cuadruplica.

e.a1 a2 = ?F1 F2 = F1/2m1 m2 = m1/2

F1 = m1a1 (1)F2 = m2a2

211

22a

mF =

F1 = m1a2 (2)

Dividiendo la expresión (2) entre la (1):

11

21

1

1

am

am

F

F

//=

//

1

21a

a=

a1 = a2 ; es decir, la aceleración permanece constante.

C. Resuelve los siguientes problemas:

1. ¿Qué fuerza se debe ejercer sobre un cuerpo de 12 kg de masa para que se acelere a razón de 3,5 m/s2?

F = ma = (12 kg)(3,5 m/s2)F = 42 N

2. Si sobre un cuerpo de 8 kg de masa se ejercen fuerzas de 12 N y 5 N que forman entre sí un ángulo de 90º, calcular la fuerza resultante que actúa sobre el cuerpo y la aceleración que experimenta.

Fuerza Resultante: como son perpendiculares las fuerzas, se halla mediante el Teorema de Pitágoras:

( ) ( ) 22222

21 169512 NNNFFFR =+=+=

13

Page 14: 38271548 TALLER 23 Segunda Ley de Newton

FR = 13 N

Aceleración:

FR = ma

kg

N

m

Fa R

8

13==

a = 1,625 m/s2

3. Sobre un cuerpo de 4 kg de masa, inicialmente en reposo, actúa una fuerza de 32 N, ¿qué velocidad llevará el cuerpo cuando ha recorrido 14 m?

Cálculo de la aceleración:

28

4

32

s

m

kg

N

m

Fa ===

Cálculo de la velocidad:

2ax = v2 – v02

2ax = v2 – 0

( )2

2

222414822

s

mm

s

maxv =

==

v = 14,97 m/s

4. Si sobre un cuerpo actúa una fuerza de 54 N, éste se acelera a razón de 9 m/s2, ¿cuánto se acelerará si la fuerza aplicada fuera de 6 N?

Como la aceleración es directamente proporcional a la Fuerza, entonces:

54 N → 9 m/s2

6 N → a

( )N

Ns

m

a/

/

=54

692

a = 1 m/s2

5. Dos personas halan de un cuerpo de 20 kg con fuerzas de 100 N y 200 N, calcular la aceleración de la masa si:

a. Las fuerzas se ejercen horizontalmente en el mismo sentido.b. Las fuerzas actúan horizontalmente en sentido contrario.

14

Page 15: 38271548 TALLER 23 Segunda Ley de Newton

c. Las fuerzas forman entre sí un ángulo de 60º.

Solución:

a. FR = F1 + F2 = 100 N + 200 N = 300 N

kg

N

m

Fa R

20

300==

a = 15 m/s2

b. FR = F2 – F1 = 200 N – 100 N = 100 N

kg

N

m

Fa R

20

100==

a = 5 m/s2

c. º120cos2 2122

21 FFFFFR −+=

( ) ( ) ( )( ) º120cosN200N1002N200N100F 22R −+=

270000 NFR =FR = 264,58 N

kg

N

m

Fa R

20

58,264==

a = 13,23 m/s2

¿En qué sentido deben actuar las fuerzas para que la aceleración sea:

a. Mínimab. Máxima

Respuestas:

a. Las fuerzas deben actuar en sentido contrario.b. Las fuerzas deben actuar en el mismo sentido.

15