Taller de Algebra Lineal

Post on 01-Feb-2016

12 views 1 download

description

Ejercicios resueltos de álgebra lineal

Transcript of Taller de Algebra Lineal

Universidad de CartagenaFacultad de Ciencias Exactas

TALLER III DE ALGEBRA LINEAL(Aplicacion de la regla de cramer)

Alberto RodrıguezEiver Rodrıguez

15 de marzo de 2015

ALGEBRA LINEAL I 4 Sem. 2015

1. Desarrollo

1. Resolver los siguientes sistemas utilizando la regla de Cramer:

a.

2x1 + x2 + x3 = 63x1 − 2x2 − 3x3 = 58x1 + 2x2 + 5x3 = 11

Respuesta:

Sea A =

2 1 13 −2 −38 2 5

|A| =

∣∣∣∣∣∣2 1 13 −2 −38 2 5

∣∣∣∣∣∣ = 2(−10 + 6)− 1(15 + 24) + 1(6 + 16) = −25

Luego:

|B1| =

∣∣∣∣∣∣6 1 15 −2 −311 2 5

∣∣∣∣∣∣ = 6(−10 + 6)− 1(25 + 33) + 1(10 + 22) = −50

|B2| =

∣∣∣∣∣∣2 6 13 5 −38 11 5

∣∣∣∣∣∣ = 2(25 + 33)− 6(15 + 24) + 1(33− 40) = −125

|B3| =

∣∣∣∣∣∣2 1 63 −2 58 2 11

∣∣∣∣∣∣ = 2(−22− 10)− 1(33− 40) + 6(6 + 16) = 75

Como xi = |Bi||A|

x1 = |B1||A| = −50

−25 = 2

x2 = |B2||A| = −125

−25 = 5

x3 = |B3||A| = 75

−25 = −3

b.

x1 + x2 + x3 + x4 = 6

2x1 − x3 − x4 = 43x3 + 6x4 = 3x1 − x4 = 5

Respuesta:

Sea A =

1 1 1 12 0 −1 −10 0 3 61 0 0 −1

2

ALGEBRA LINEAL I 4 Sem. 2015

|A| =

∣∣∣∣∣∣∣∣1 1 1 12 0 −1 −10 0 3 61 0 0 −1

∣∣∣∣∣∣∣∣ = (−1)

∣∣∣∣∣∣2 −1 −10 3 61 0 −1

∣∣∣∣∣∣+ (0)

∣∣∣∣∣∣1 1 10 3 61 0 −1

∣∣∣∣∣∣− (0)

∣∣∣∣∣∣1 1 12 −1 −11 0 −1

∣∣∣∣∣∣+ (0)

∣∣∣∣∣∣1 1 12 −1 −10 3 6

∣∣∣∣∣∣ =

(−1)(2(−3) + 1(−6)− 1(−3)) = 9

Luego:

|B1| =

∣∣∣∣∣∣∣∣6 1 1 14 0 −1 −13 0 3 65 0 0 −1

∣∣∣∣∣∣∣∣ = (−1)

∣∣∣∣∣∣4 −1 −13 3 65 0 −1

∣∣∣∣∣∣+ (0)

∣∣∣∣∣∣6 1 13 3 65 0 −1

∣∣∣∣∣∣− (0)

∣∣∣∣∣∣6 1 14 −1 −15 0 −1

∣∣∣∣∣∣+ (0)

∣∣∣∣∣∣6 1 14 −1 −13 3 6

∣∣∣∣∣∣ =

(−1)(4(−3) + 1(−3− 30)− 1(−15)) = 30

|B2| =

∣∣∣∣∣∣∣∣1 6 1 12 4 −1 −10 3 3 61 5 0 −1

∣∣∣∣∣∣∣∣ = (1)

∣∣∣∣∣∣4 −1 −13 3 65 0 −1

∣∣∣∣∣∣ − (6)

∣∣∣∣∣∣2 −1 −10 3 61 0 −1

∣∣∣∣∣∣ + (1)

∣∣∣∣∣∣2 4 −10 3 61 5 −1

∣∣∣∣∣∣ − (1)

∣∣∣∣∣∣2 4 −10 3 31 5 0

∣∣∣∣∣∣ =

1[4(−3)+1(−3−30)−1(−15)]−6[2(−3)+1(−6)−1(−3)]+1[2(−3−30)−4(−6)−1(−3)]−1[2(−15)−4(−3)− 1(−3)] = 0

|B3| =

∣∣∣∣∣∣∣∣1 1 6 12 0 4 −10 0 3 61 0 5 −1

∣∣∣∣∣∣∣∣ = (−1)

∣∣∣∣∣∣2 4 −10 3 61 5 −1

∣∣∣∣∣∣ = −1[2(−3− 30)− 4(−6)− 1(−3)] = 39

|B4| =

∣∣∣∣∣∣∣∣1 1 1 62 0 −1 40 0 3 31 0 0 5

∣∣∣∣∣∣∣∣ = (−1)

∣∣∣∣∣∣2 −1 40 3 31 0 5

∣∣∣∣∣∣ = −1[2(15) + 1(−3) + 4(−3)] = −15

Como xi = |Bi||A|

x1 = |B1||A| = 30

9 = 103

x2 = |B2||A| = 0

9 = 0

x3 = |B3||A| = 39

9 = 133

x4 = |B4||A| = −15

9 = −53

c.

x1 − x4 = 72x2 + x3 = 2

4x1 − x2 = −33x3 − 5x4 = 2

Respuesta:

3

ALGEBRA LINEAL I 4 Sem. 2015

Sea A =

1 0 0 −10 2 1 04 −1 0 00 0 3 −5

|A| =

∣∣∣∣∣∣∣∣1 0 0 −10 2 1 04 −1 0 00 0 3 −5

∣∣∣∣∣∣∣∣ = (1)

∣∣∣∣∣∣2 1 0−1 0 00 3 −5

∣∣∣∣∣∣− (−1)

∣∣∣∣∣∣0 2 14 −1 00 0 3

∣∣∣∣∣∣ = 1[2(0)− 1(5) + 0(−3)] + 1[0− 2(12) +

1(0)] = −29

Luego:

|B1| =

∣∣∣∣∣∣∣∣7 0 0 −12 2 1 0−3 −1 0 02 0 3 −5

∣∣∣∣∣∣∣∣ = (7)

∣∣∣∣∣∣2 1 0−1 0 00 3 −5

∣∣∣∣∣∣ + (1)

∣∣∣∣∣∣2 2 1−3 −1 02 0 3

∣∣∣∣∣∣ = 7[2(0) − 1(5) + 0] + 1[2(−3) −

2(−9) + 1(2)] = −21

|B2| =

∣∣∣∣∣∣∣∣1 7 0 −10 2 1 04 −3 0 00 2 3 −5

∣∣∣∣∣∣∣∣ = (1)

∣∣∣∣∣∣2 1 0−3 0 02 3 −5

∣∣∣∣∣∣ + (4)

∣∣∣∣∣∣7 0 −12 1 02 3 −5

∣∣∣∣∣∣ = 1[2(0) − 1(15) + 0] + 4[7(−5) − 0 −

1(6− 2)] = −171

|B3| =

∣∣∣∣∣∣∣∣1 0 7 −10 2 2 04 −1 −3 00 0 2 −5

∣∣∣∣∣∣∣∣ = −(−1)

∣∣∣∣∣∣0 2 24 −1 −30 0 2

∣∣∣∣∣∣+ (−5)

∣∣∣∣∣∣1 0 70 2 24 −1 −3

∣∣∣∣∣∣ = 1[0− 2(8) + (0)]− 5[1(−6 +

2)− 0 + 7(−8)] = 284

|B4| =

∣∣∣∣∣∣∣∣1 0 0 70 2 1 24 −1 0 −30 0 3 2

∣∣∣∣∣∣∣∣ = (1)

∣∣∣∣∣∣2 1 2−1 0 −30 3 2

∣∣∣∣∣∣− (7)

∣∣∣∣∣∣0 2 14 −1 00 0 3

∣∣∣∣∣∣ = 1[2(0− (−9))− (−1)(2− 6)]− 7[−4(6−

0)] = 182

Como xi = |Bi||A|

x1 = |B1||A| = −21

−29 = 2129

x2 = |B2||A| = −171

−29 = 17129

x3 = |B3||A| = 284

−29 = − 28429

x4 = |B4||A| = 182

−29 = − 18229

2. Calcular los siguientes determinantes:

4

ALGEBRA LINEAL I 4 Sem. 2015

a.

∣∣∣∣∣∣∣∣1 −1 2 34 0 2 5−1 2 3 75 1 0 4

∣∣∣∣∣∣∣∣Respuesta:∣∣∣∣∣∣∣∣

1 −1 2 34 0 2 5−1 2 3 75 1 0 4

∣∣∣∣∣∣∣∣ = −(−1)

∣∣∣∣∣∣4 2 5−1 3 75 0 4

∣∣∣∣∣∣− (2)

∣∣∣∣∣∣1 2 34 2 55 0 4

∣∣∣∣∣∣+ (1)

∣∣∣∣∣∣1 2 34 2 5−1 3 7

∣∣∣∣∣∣= 1[−2(−4− 35) + 3(16− 25)]− 2[−2(16− 25) + 2(4− 15)] + 1[1(14− 15)− 2(28 + 5) + 3(12 + 2)] = 34

b.

∣∣∣∣∣∣1 −1 23 4 2−2 3 4

∣∣∣∣∣∣Respuesta:∣∣∣∣∣∣

1 −1 23 4 2−2 3 4

∣∣∣∣∣∣ = 1(16− 6)− (−1)(12 + 4) + 2(9 + 8) = 60

3. Hallar la inversa de los siguientes matrices utilizando determinantes:

a.

2 1 0 00 −1 3 01 0 0 −23 0 −1 0

Respuesta:

Sea A =

2 1 0 00 −1 3 01 0 0 −23 0 −1 0

Por otro lado det(A) =

∣∣A∣∣ =

∣∣∣∣∣∣∣∣2 1 0 00 −1 3 01 0 0 −23 0 −1 0

∣∣∣∣∣∣∣∣ = −(−2)

∣∣∣∣∣∣2 1 00 −1 33 0 −1

∣∣∣∣∣∣ = 2[2(1)− 1(−9)] = 22

Sea B la matriz de cofactores de A esto es:

5

ALGEBRA LINEAL I 4 Sem. 2015

B =

A11 A12 A13 A14

A21 A22 A23 A24

A31 A32 A33 A34

A41 A42 A43 A44

Como:

A11 = (−1)1+1

∣∣∣∣∣∣−1 3 00 0 −20 −1 0

∣∣∣∣∣∣ = −1(−2) = 2

A12 = (−1)1+2

∣∣∣∣∣∣0 3 01 0 −23 −1 0

∣∣∣∣∣∣ = −[−3(0− (−6))] = 18

A13 = (−1)1+3

∣∣∣∣∣∣0 −1 01 0 −23 0 0

∣∣∣∣∣∣ = −(−1)(0− (−6)) = 6

A14 = (−1)1+4

∣∣∣∣∣∣0 −1 31 0 03 0 −1

∣∣∣∣∣∣ = −[−(−1)(−1− 0)] = 1

A21 = (−1)2+1

∣∣∣∣∣∣1 0 00 0 −20 −1 0

∣∣∣∣∣∣ = −[1(0− 2)] = 2

A22 = (−1)2+2

∣∣∣∣∣∣2 0 01 0 −23 −1 0

∣∣∣∣∣∣ = 2(0− 2) = −4

A23 = (−1)2+3

∣∣∣∣∣∣2 1 01 0 −23 0 0

∣∣∣∣∣∣ = −[−1(0− (−6))] = 6

A24 = (−1)2+4

∣∣∣∣∣∣2 1 01 0 03 0 −1

∣∣∣∣∣∣ = −1(−1− 0) = 1

A31 = (−1)3+1

∣∣∣∣∣∣1 0 0−1 3 00 −1 0

∣∣∣∣∣∣ = 1(0− 0) = 0

A32 = (−1)3+2

∣∣∣∣∣∣2 0 00 3 03 −1 0

∣∣∣∣∣∣ = 0

6

ALGEBRA LINEAL I 4 Sem. 2015

A33 = (−1)3+3

∣∣∣∣∣∣2 1 00 −1 03 0 0

∣∣∣∣∣∣ = 0

A34 = (−1)3+4

∣∣∣∣∣∣2 1 00 −1 33 0 −1

∣∣∣∣∣∣ = −[2(1− 0)− 1(0− 9)] = −11

A41 = (−1)4+1

∣∣∣∣∣∣1 0 0−1 3 00 0 −2

∣∣∣∣∣∣ = −[1(−6− 0)] = 6

A42 = (−1)4+2

∣∣∣∣∣∣2 0 00 3 01 0 −2

∣∣∣∣∣∣ = 2(−6− 0) = −12

A43 = (−1)4+3

∣∣∣∣∣∣2 1 00 −1 01 0 −2

∣∣∣∣∣∣ = −[−2(−2− 0)] = −4

A44 = (−1)4+4

∣∣∣∣∣∣2 1 00 −1 31 0 0

∣∣∣∣∣∣ = 1(3− 0) = 3

Ası

B =

2 18 6 12 −4 6 10 0 0 −116 −12 −4 3

Luego Adj = Bt =

2 2 0 618 −4 0 −126 6 0 −41 1 −11 3

Ası, por teorema 5

A−1 = ( 1detA )adjA= ( 1

22 )

2 2 0 618 −4 0 −126 6 0 −41 1 −11 3

=

1/11 1/11 0 3/11

9/11 −2/11 0 −6/11

3/11 3/11 0 −2/11

1/22 1/22 −1/2 3/22

7

ALGEBRA LINEAL I 4 Sem. 2015

b.

3 −1 2 41 1 0 3−2 4 1 56 −4 1 2

Respuesta:

Sea A =

3 −1 2 41 1 0 3−2 4 1 56 −4 1 2

Por otro lado det(A) =

∣∣A∣∣=

∣∣∣∣∣∣∣∣3 −1 2 41 1 0 3−2 4 1 56 −4 1 2

∣∣∣∣∣∣∣∣ = (2)

∣∣∣∣∣∣1 1 3−2 4 56 −4 2

∣∣∣∣∣∣+(1)

∣∣∣∣∣∣3 −1 41 1 36 −4 2

∣∣∣∣∣∣−(1)

∣∣∣∣∣∣3 −1 41 1 3−2 4 5

∣∣∣∣∣∣ =

2[1(8 + 20)− 1(−4− 30) + 3(8− 24)] + [3(2 + 12)− (−1)(2− 18) + 4(−4− 6)]− [3(5− 12)− (−1)(5−(−6)) + 4(4− (−2))] = 0

Como det(A) = 0 Por Teorema 5. A no es invertible.

c.

1 0 −1 10 2 2 −34 −1 −1 0−2 1 4 0

Respuesta:

Sea A =

1 0 −1 10 2 2 −34 −1 −1 0−2 1 4 0

Por otro lado det(A) =

∣∣A∣∣ =

∣∣∣∣∣∣∣∣1 0 −1 10 2 2 −34 −1 −1 0−2 1 4 0

∣∣∣∣∣∣∣∣ = (−1)

∣∣∣∣∣∣0 2 24 −1 −1−2 1 4

∣∣∣∣∣∣ + (−3)

∣∣∣∣∣∣1 0 −14 −1 −1−2 1 4

∣∣∣∣∣∣ =

−[0− 2(16− 2) + 2(4− 2)]− 3[1(−4 + 1)− 1(4− 2)] = 39

Sea B la matriz de cofactores de A esto es:

B =

A11 A12 A13 A14

A21 A22 A23 A24

A31 A32 A33 A34

A41 A42 A43 A44

Como:

A11 = (−1)1+1

∣∣∣∣∣∣2 2 −3−1 −1 01 4 0

∣∣∣∣∣∣ = −3(−4− (−1)) = 9

A12 = (−1)1+2

∣∣∣∣∣∣0 2 −34 −1 0−2 4 0

∣∣∣∣∣∣ = −[−3(16− 2)] = 42

8

ALGEBRA LINEAL I 4 Sem. 2015

A13 = (−1)1+3

∣∣∣∣∣∣0 2 −34 −1 0−2 1 0

∣∣∣∣∣∣ = −3(4− 2) = −6

A14 = (−1)1+4

∣∣∣∣∣∣0 2 24 −1 −1−2 1 4

∣∣∣∣∣∣ = −[−2(16− 2) + 2(4− 2)] = 24

A21 = (−1)2+1

∣∣∣∣∣∣0 −1 1−1 −1 01 4 0

∣∣∣∣∣∣ = −[1(−4 + 1)] = 3

A22 = (−1)2+2

∣∣∣∣∣∣1 −1 14 −1 0−2 4 0

∣∣∣∣∣∣ = 1(16− 2) = 14

A23 = (−1)2+3

∣∣∣∣∣∣1 0 14 −1 0−2 1 0

∣∣∣∣∣∣ = −[1(4− 2)] = −2

A24 = (−1)2+4

∣∣∣∣∣∣1 0 −14 −1 −1−2 1 4

∣∣∣∣∣∣ = 1(−4 + 1)− 1(4− 2) = −5

A31 = (−1)3+1

∣∣∣∣∣∣0 −1 12 2 −31 4 0

∣∣∣∣∣∣ = −(−1)(0 + 3) + 1(8− 2) = 9

A32 = (−1)3+2

∣∣∣∣∣∣1 −1 10 2 −3−2 4 0

∣∣∣∣∣∣ = −[1(0 + 12)− 2(3− 2)] = −10

A33 = (−1)3+3

∣∣∣∣∣∣1 0 10 2 −3−2 1 0

∣∣∣∣∣∣ = 1(0 + 3) + 1(0 + 4) = 7

A34 = (−1)3+4

∣∣∣∣∣∣1 0 −10 2 2−2 1 4

∣∣∣∣∣∣ = −[1(8− 2)− 1(0 + 4)] = −2

A41 = (−1)4+1

∣∣∣∣∣∣0 −1 12 2 −3−1 −1 0

∣∣∣∣∣∣ = −[−(−1)(0− 3) + 1(−2 + 2)] = 3

9

ALGEBRA LINEAL I 4 Sem. 2015

A42 = (−1)4+2

∣∣∣∣∣∣1 −1 10 2 −34 −1 0

∣∣∣∣∣∣ = 1(0− 3) + 4(3− 2) = 1

A43 = (−1)4+3

∣∣∣∣∣∣1 0 10 2 −34 −1 0

∣∣∣∣∣∣ = −[1(0− 3) + 1(0− 8)] = 11

A44 = (−1)4+4

∣∣∣∣∣∣1 0 −10 2 24 −1 −1

∣∣∣∣∣∣ = 1(−2 + 2)− 1(0− 8) = 8

Ası

B =

9 42 −6 243 14 −2 −59 −10 7 −23 1 11 8

Luego Adj = Bt =

9 3 9 342 14 −10 1−6 −2 7 1124 −5 −2 8

Ası, por teorema 5

A−1 = ( 1detA )adjA= ( 1

39 )

9 3 9 342 14 −10 1−6 −2 7 1124 −5 −2 8

=

3/13 1/13 3/13 1/13

14/13 14/39 −10/39 1/39

−2/13 −2/39 7/39 11/39

8/13 −5/39 −2/39 8/39

4.

Figura 1: Triangulo

i. Usando trigonometria elemental muestre que:

c cosA + a cosC = bb cosA + a cosB = cc cosB + b cosC = a

Respuesta:Trazemos una perpendicular desde el vertice del angulo B hasta un punto en la recta formada por losvertices de los angulos A y C; como se muestra en la figura 2:

10

ALGEBRA LINEAL I 4 Sem. 2015

Figura 2: Triangulo para hallar b

De donde b = d + e = c cosA + a cosC

Ahora trazemos una perpendicular desde el vertice del angulo C hasta un punto en la recta forma-da por los vertices de los angulos A y B; como se muestra en la figura 3:

Figura 3: Triangulo para hallar c

De donde b = f + g = b cosA + a cosB

Por ultimo trazemos una perpendicular desde el vertice del angulo A hasta un punto en la rectaformada por los vertices de los angulos B y C; como se muestra en la figura 4:

Figura 4: Triangulo para hallar a

De donde a = r + s = c cosB + b cosC

ii. Use la regla de Cramer para resolver el sistema i.

Respuesta:

Ordenando las ecuaciones tenemos:

c cosA + 0 + a cosC = bb cosA + a cosB + 0 = c0 + c cosB + b cosC = a

Hallemos cosA, cosB, cosC

Sea A =

c 0 ab a 00 c b

Asi:

|A| =

c 0 ab a 00 c b

= c(ab− 0) + a(bc− 0) = 2abc

Luego:

|B1| =

∣∣∣∣∣∣b 0 ac a 0a c b

∣∣∣∣∣∣ = b(ab− 0) + a(c2 − a2) = ab2 + ac2 − a3

|B2| =

∣∣∣∣∣∣c b ab c 00 a b

∣∣∣∣∣∣ = c(cb− 0)− b(b2 − a2) = c2b− b3 + a2b

11

ALGEBRA LINEAL I 4 Sem. 2015

|B3| =

∣∣∣∣∣∣c 0 bb a c0 c a

∣∣∣∣∣∣ = c(a2 − c2) + b(bc− 0) = ca2 − c3 + b2c

Por lo tanto:

cosA = ab2+ac2−a3

2abc = b2+c2−a2

2bc

cosB = c2b−b3+a2b2abc = c2−b2+a2

2ac

cosC = ca2−c3+b2c2abc = a2−c2+b2

2ab

12